![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imim1d | Structured version Visualization version GIF version |
Description: Deduction adding nested consequents. Deduction associated with imim1 83 and imim1i 63. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 12-Sep-2012.) |
Ref | Expression |
---|---|
imim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
imim1d | ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
3 | 1, 2 | imim12d 81 | 1 ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: imim1 83 expt 168 imbi1d 330 meredith 1606 nfimt 1861 ax13b 2006 ax12v2 2089 sbequi 2403 mo3 2536 2mo 2580 sstr2 3643 ssralv 3699 soss 5082 frss 5110 fvn0ssdmfun 6390 tfi 7095 nneneq 8184 wemaplem2 8493 unxpwdom2 8534 cantnfp1lem3 8615 infxpenlem 8874 axpowndlem3 9459 indpi 9767 fzind 11513 injresinj 12629 seqcl2 12859 seqfveq2 12863 seqshft2 12867 monoord 12871 seqsplit 12874 seqid2 12887 seqhomo 12888 seqcoll 13286 rexuzre 14136 rexico 14137 limsupbnd2 14258 rlim2lt 14272 rlim3 14273 lo1le 14426 caurcvg 14451 lcmfunsnlem1 15397 coprmprod 15422 eulerthlem2 15534 ramtlecl 15751 sylow1lem1 18059 efgsrel 18193 elcls3 20935 cncls2 21125 cnntr 21127 filssufilg 21762 ufileu 21770 alexsubALTlem3 21900 tgpt0 21969 isucn2 22130 imasdsf1olem 22225 nmoleub2lem2 22962 ovolicc2lem3 23333 dyadmbllem 23413 dvnres 23739 rlimcnp 24737 xrlimcnp 24740 ftalem2 24845 bcmono 25047 2sqlem6 25193 eupth2lems 27216 mdslmd1lem1 29312 xrge0infss 29653 subfacp1lem6 31293 cvmliftlem7 31399 cvmliftlem10 31402 ss2mcls 31591 mclsax 31592 bj-exlimh 32727 bj-spimt2 32834 wl-ax8clv2 33511 mettrifi 33683 diaintclN 36664 dibintclN 36773 dihintcl 36950 mapdh9a 37396 iunrelexp0 38311 imbi12VD 39423 monoordxrv 40025 smonoord 41666 ply1mulgsumlem1 42499 setrec1lem2 42760 |
Copyright terms: Public domain | W3C validator |