![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imim12d | Structured version Visualization version GIF version |
Description: Deduction combining antecedents and consequents. Deduction associated with imim12 105 and imim12i 62. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Mel L. O'Cat, 30-Oct-2011.) |
Ref | Expression |
---|---|
imim12d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
imim12d.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
imim12d | ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim12d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | imim12d.2 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
3 | 2 | imim2d 57 | . 2 ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜒 → 𝜏))) |
4 | 1, 3 | syl5d 73 | 1 ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: imim1d 82 rspcimdv 3341 peano5 7131 isf34lem6 9240 inar1 9635 supsrlem 9970 r19.29uz 14134 o1of2 14387 o1rlimmul 14393 caucvg 14453 isprm5 15466 mrissmrid 16348 kgen2ss 21406 txlm 21499 isr0 21588 metcnpi3 22398 addcnlem 22714 nmhmcn 22966 aalioulem5 24136 xrlimcnp 24740 dmdmd 29287 mdsl0 29297 mdsl1i 29308 lmxrge0 30126 bnj517 31081 ax8dfeq 31828 bj-mo3OLD 32957 bj-ax9-2 33016 poimirlem29 33568 heicant 33574 ispridlc 33999 intabssd 38233 ss2iundf 38268 |
Copyright terms: Public domain | W3C validator |