![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imdistanda | Structured version Visualization version GIF version |
Description: Distribution of implication with conjunction (deduction version with conjoined antecedent). (Contributed by Jeff Madsen, 19-Jun-2011.) |
Ref | Expression |
---|---|
imdistanda.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
imdistanda | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imdistanda.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
2 | 1 | ex 449 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | imdistand 730 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: cfub 9263 cflm 9264 fzind 11667 uzss 11900 cau3lem 14293 supcvg 14787 eulerthlem2 15689 pgpfac1lem3 18676 iscnp4 21269 cncls2 21279 cncls 21280 cnntr 21281 1stcelcls 21466 cnpflf 22006 fclsnei 22024 cnpfcf 22046 alexsublem 22049 iscau4 23277 caussi 23295 equivcfil 23297 ismbf3d 23620 i1fmullem 23660 abelth 24394 ocsh 28451 fpwrelmap 29817 locfinreflem 30216 nosupbnd1lem5 32164 matunitlindf 33720 isdrngo3 34071 keridl 34144 pmapjat1 35642 |
Copyright terms: Public domain | W3C validator |