![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imbi2 | Structured version Visualization version GIF version |
Description: Theorem *4.85 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 19-May-2013.) |
Ref | Expression |
---|---|
imbi2 | ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 → 𝜑) ↔ (𝜒 → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 ↔ 𝜓)) | |
2 | 1 | imbi2d 329 | 1 ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 → 𝜑) ↔ (𝜒 → 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 |
This theorem is referenced by: relexpindlem 14022 relexpind 14023 ifpbi2 38331 ifpbi3 38332 3impexpbicom 39205 sbcim2g 39268 3impexpbicomVD 39609 sbcim2gVD 39628 csbeq2gVD 39645 con5VD 39653 hbexgVD 39659 ax6e2ndeqVD 39662 2sb5ndVD 39663 ax6e2ndeqALT 39684 2sb5ndALT 39685 |
Copyright terms: Public domain | W3C validator |