![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imasmnd | Structured version Visualization version GIF version |
Description: The image structure of a monoid is a monoid. (Contributed by Mario Carneiro, 24-Feb-2015.) |
Ref | Expression |
---|---|
imasmnd.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
imasmnd.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
imasmnd.p | ⊢ + = (+g‘𝑅) |
imasmnd.f | ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
imasmnd.e | ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) |
imasmnd.r | ⊢ (𝜑 → 𝑅 ∈ Mnd) |
imasmnd.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
imasmnd | ⊢ (𝜑 → (𝑈 ∈ Mnd ∧ (𝐹‘ 0 ) = (0g‘𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imasmnd.u | . 2 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
2 | imasmnd.v | . 2 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
3 | imasmnd.p | . 2 ⊢ + = (+g‘𝑅) | |
4 | imasmnd.f | . 2 ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) | |
5 | imasmnd.e | . 2 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) | |
6 | imasmnd.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Mnd) | |
7 | 6 | 3ad2ant1 1126 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → 𝑅 ∈ Mnd) |
8 | simp2 1130 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → 𝑥 ∈ 𝑉) | |
9 | 2 | 3ad2ant1 1126 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → 𝑉 = (Base‘𝑅)) |
10 | 8, 9 | eleqtrd 2851 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → 𝑥 ∈ (Base‘𝑅)) |
11 | simp3 1131 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → 𝑦 ∈ 𝑉) | |
12 | 11, 9 | eleqtrd 2851 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → 𝑦 ∈ (Base‘𝑅)) |
13 | eqid 2770 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
14 | 13, 3 | mndcl 17508 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥 + 𝑦) ∈ (Base‘𝑅)) |
15 | 7, 10, 12, 14 | syl3anc 1475 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥 + 𝑦) ∈ (Base‘𝑅)) |
16 | 15, 9 | eleqtrrd 2852 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥 + 𝑦) ∈ 𝑉) |
17 | 6 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑅 ∈ Mnd) |
18 | 10 | 3adant3r3 1198 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑥 ∈ (Base‘𝑅)) |
19 | 12 | 3adant3r3 1198 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑦 ∈ (Base‘𝑅)) |
20 | simpr3 1236 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑧 ∈ 𝑉) | |
21 | 2 | adantr 466 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑉 = (Base‘𝑅)) |
22 | 20, 21 | eleqtrd 2851 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑧 ∈ (Base‘𝑅)) |
23 | 13, 3 | mndass 17509 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
24 | 17, 18, 19, 22, 23 | syl13anc 1477 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
25 | 24 | fveq2d 6336 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝐹‘((𝑥 + 𝑦) + 𝑧)) = (𝐹‘(𝑥 + (𝑦 + 𝑧)))) |
26 | imasmnd.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
27 | 13, 26 | mndidcl 17515 | . . . 4 ⊢ (𝑅 ∈ Mnd → 0 ∈ (Base‘𝑅)) |
28 | 6, 27 | syl 17 | . . 3 ⊢ (𝜑 → 0 ∈ (Base‘𝑅)) |
29 | 28, 2 | eleqtrrd 2852 | . 2 ⊢ (𝜑 → 0 ∈ 𝑉) |
30 | 6 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑅 ∈ Mnd) |
31 | 2 | eleq2d 2835 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑉 ↔ 𝑥 ∈ (Base‘𝑅))) |
32 | 31 | biimpa 462 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑥 ∈ (Base‘𝑅)) |
33 | 13, 3, 26 | mndlid 17518 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → ( 0 + 𝑥) = 𝑥) |
34 | 30, 32, 33 | syl2anc 565 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ( 0 + 𝑥) = 𝑥) |
35 | 34 | fveq2d 6336 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝐹‘( 0 + 𝑥)) = (𝐹‘𝑥)) |
36 | 13, 3, 26 | mndrid 17519 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥 + 0 ) = 𝑥) |
37 | 30, 32, 36 | syl2anc 565 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝑥 + 0 ) = 𝑥) |
38 | 37 | fveq2d 6336 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝐹‘(𝑥 + 0 )) = (𝐹‘𝑥)) |
39 | 1, 2, 3, 4, 5, 6, 16, 25, 29, 35, 38 | imasmnd2 17534 | 1 ⊢ (𝜑 → (𝑈 ∈ Mnd ∧ (𝐹‘ 0 ) = (0g‘𝑈))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1070 = wceq 1630 ∈ wcel 2144 –onto→wfo 6029 ‘cfv 6031 (class class class)co 6792 Basecbs 16063 +gcplusg 16148 0gc0g 16307 “s cimas 16371 Mndcmnd 17501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-oadd 7716 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-sup 8503 df-inf 8504 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-7 11285 df-8 11286 df-9 11287 df-n0 11494 df-z 11579 df-dec 11695 df-uz 11888 df-fz 12533 df-struct 16065 df-ndx 16066 df-slot 16067 df-base 16069 df-plusg 16161 df-mulr 16162 df-sca 16164 df-vsca 16165 df-ip 16166 df-tset 16167 df-ple 16168 df-ds 16171 df-0g 16309 df-imas 16375 df-mgm 17449 df-sgrp 17491 df-mnd 17502 |
This theorem is referenced by: imasmndf1 17536 |
Copyright terms: Public domain | W3C validator |