![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iman | Structured version Visualization version GIF version |
Description: Express implication in terms of conjunction. Theorem 3.4(27) of [Stoll] p. 176. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 30-Oct-2012.) |
Ref | Expression |
---|---|
iman | ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnotb 304 | . . 3 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
2 | 1 | imbi2i 325 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → ¬ ¬ 𝜓)) |
3 | imnan 437 | . 2 ⊢ ((𝜑 → ¬ ¬ 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) | |
4 | 2, 3 | bitri 264 | 1 ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: annim 440 pm3.24 944 xor 953 nic-mpALT 1637 nic-axALT 1639 rexanali 3027 difdif 3769 dfss4 3891 difin 3894 ssdif0 3975 difin0ss 3979 inssdif0 3980 npss0OLD 4048 dfif2 4121 notzfaus 4870 dffv2 6310 tfinds 7101 domtriord 8147 inf3lem3 8565 nominpos 11307 isprm3 15443 vdwlem13 15744 vdwnn 15749 psgnunilem4 17963 efgredlem 18206 efgred 18207 ufinffr 21780 ptcmplem5 21907 nmoleub2lem2 22962 ellogdm 24430 pntpbnd 25322 cvbr2 29270 cvnbtwn2 29274 cvnbtwn3 29275 cvnbtwn4 29276 chpssati 29350 chrelat2i 29352 chrelat3 29358 bnj1476 31043 bnj110 31054 bnj1388 31227 df3nandALT1 32521 imnand2 32524 bj-andnotim 32698 lindsenlbs 33534 poimirlem11 33550 poimirlem12 33551 fdc 33671 lpssat 34618 lssat 34621 lcvbr2 34627 lcvbr3 34628 lcvnbtwn2 34632 lcvnbtwn3 34633 cvrval2 34879 cvrnbtwn2 34880 cvrnbtwn3 34881 cvrnbtwn4 34884 atlrelat1 34926 hlrelat2 35007 dihglblem6 36946 or3or 38636 uneqsn 38638 plvcofphax 41435 |
Copyright terms: Public domain | W3C validator |