Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imambfm Structured version   Visualization version   GIF version

Theorem imambfm 30633
Description: If the sigma-algebra in the range of a given function is generated by a collection of basic sets 𝐾, then to check the measurability of that function, we need only consider inverse images of basic sets 𝑎. (Contributed by Thierry Arnoux, 4-Jun-2017.)
Hypotheses
Ref Expression
imambfm.1 (𝜑𝐾 ∈ V)
imambfm.2 (𝜑𝑆 ran sigAlgebra)
imambfm.3 (𝜑𝑇 = (sigaGen‘𝐾))
Assertion
Ref Expression
imambfm (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)))
Distinct variable groups:   𝐹,𝑎   𝐾,𝑎   𝑆,𝑎   𝑇,𝑎   𝜑,𝑎

Proof of Theorem imambfm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imambfm.2 . . . . 5 (𝜑𝑆 ran sigAlgebra)
21adantr 472 . . . 4 ((𝜑𝐹 ∈ (𝑆MblFnM𝑇)) → 𝑆 ran sigAlgebra)
3 imambfm.3 . . . . . 6 (𝜑𝑇 = (sigaGen‘𝐾))
4 imambfm.1 . . . . . . 7 (𝜑𝐾 ∈ V)
54sgsiga 30514 . . . . . 6 (𝜑 → (sigaGen‘𝐾) ∈ ran sigAlgebra)
63, 5eqeltrd 2839 . . . . 5 (𝜑𝑇 ran sigAlgebra)
76adantr 472 . . . 4 ((𝜑𝐹 ∈ (𝑆MblFnM𝑇)) → 𝑇 ran sigAlgebra)
8 simpr 479 . . . 4 ((𝜑𝐹 ∈ (𝑆MblFnM𝑇)) → 𝐹 ∈ (𝑆MblFnM𝑇))
92, 7, 8mbfmf 30626 . . 3 ((𝜑𝐹 ∈ (𝑆MblFnM𝑇)) → 𝐹: 𝑆 𝑇)
101ad2antrr 764 . . . . 5 (((𝜑𝐹 ∈ (𝑆MblFnM𝑇)) ∧ 𝑎𝐾) → 𝑆 ran sigAlgebra)
116ad2antrr 764 . . . . 5 (((𝜑𝐹 ∈ (𝑆MblFnM𝑇)) ∧ 𝑎𝐾) → 𝑇 ran sigAlgebra)
12 simplr 809 . . . . 5 (((𝜑𝐹 ∈ (𝑆MblFnM𝑇)) ∧ 𝑎𝐾) → 𝐹 ∈ (𝑆MblFnM𝑇))
13 sssigagen 30517 . . . . . . . . 9 (𝐾 ∈ V → 𝐾 ⊆ (sigaGen‘𝐾))
144, 13syl 17 . . . . . . . 8 (𝜑𝐾 ⊆ (sigaGen‘𝐾))
1514, 3sseqtr4d 3783 . . . . . . 7 (𝜑𝐾𝑇)
1615ad2antrr 764 . . . . . 6 (((𝜑𝐹 ∈ (𝑆MblFnM𝑇)) ∧ 𝑎𝐾) → 𝐾𝑇)
17 simpr 479 . . . . . 6 (((𝜑𝐹 ∈ (𝑆MblFnM𝑇)) ∧ 𝑎𝐾) → 𝑎𝐾)
1816, 17sseldd 3745 . . . . 5 (((𝜑𝐹 ∈ (𝑆MblFnM𝑇)) ∧ 𝑎𝐾) → 𝑎𝑇)
1910, 11, 12, 18mbfmcnvima 30628 . . . 4 (((𝜑𝐹 ∈ (𝑆MblFnM𝑇)) ∧ 𝑎𝐾) → (𝐹𝑎) ∈ 𝑆)
2019ralrimiva 3104 . . 3 ((𝜑𝐹 ∈ (𝑆MblFnM𝑇)) → ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)
219, 20jca 555 . 2 ((𝜑𝐹 ∈ (𝑆MblFnM𝑇)) → (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆))
22 unielsiga 30500 . . . . . 6 (𝑇 ran sigAlgebra → 𝑇𝑇)
236, 22syl 17 . . . . 5 (𝜑 𝑇𝑇)
2423adantr 472 . . . 4 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → 𝑇𝑇)
25 unielsiga 30500 . . . . . 6 (𝑆 ran sigAlgebra → 𝑆𝑆)
261, 25syl 17 . . . . 5 (𝜑 𝑆𝑆)
2726adantr 472 . . . 4 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → 𝑆𝑆)
28 simprl 811 . . . 4 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → 𝐹: 𝑆 𝑇)
29 elmapg 8036 . . . . 5 (( 𝑇𝑇 𝑆𝑆) → (𝐹 ∈ ( 𝑇𝑚 𝑆) ↔ 𝐹: 𝑆 𝑇))
3029biimpar 503 . . . 4 ((( 𝑇𝑇 𝑆𝑆) ∧ 𝐹: 𝑆 𝑇) → 𝐹 ∈ ( 𝑇𝑚 𝑆))
3124, 27, 28, 30syl21anc 1476 . . 3 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → 𝐹 ∈ ( 𝑇𝑚 𝑆))
323adantr 472 . . . . . 6 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → 𝑇 = (sigaGen‘𝐾))
33 simpl 474 . . . . . . . . 9 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → 𝜑)
34 ssrab2 3828 . . . . . . . . . . 11 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ⊆ 𝑇
35 pwuni 4626 . . . . . . . . . . 11 𝑇 ⊆ 𝒫 𝑇
3634, 35sstri 3753 . . . . . . . . . 10 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ⊆ 𝒫 𝑇
3736a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ⊆ 𝒫 𝑇)
38 fimacnv 6510 . . . . . . . . . . . . 13 (𝐹: 𝑆 𝑇 → (𝐹 𝑇) = 𝑆)
3938ad2antrl 766 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → (𝐹 𝑇) = 𝑆)
4039, 27eqeltrd 2839 . . . . . . . . . . 11 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → (𝐹 𝑇) ∈ 𝑆)
41 imaeq2 5620 . . . . . . . . . . . . 13 (𝑎 = 𝑇 → (𝐹𝑎) = (𝐹 𝑇))
4241eleq1d 2824 . . . . . . . . . . . 12 (𝑎 = 𝑇 → ((𝐹𝑎) ∈ 𝑆 ↔ (𝐹 𝑇) ∈ 𝑆))
4342elrab 3504 . . . . . . . . . . 11 ( 𝑇 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ↔ ( 𝑇𝑇 ∧ (𝐹 𝑇) ∈ 𝑆))
4424, 40, 43sylanbrc 701 . . . . . . . . . 10 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → 𝑇 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})
456ad2antrr 764 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → 𝑇 ran sigAlgebra)
4645, 22syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → 𝑇𝑇)
47 elrabi 3499 . . . . . . . . . . . . . 14 (𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} → 𝑥𝑇)
4847adantl 473 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → 𝑥𝑇)
49 difelsiga 30505 . . . . . . . . . . . . 13 ((𝑇 ran sigAlgebra ∧ 𝑇𝑇𝑥𝑇) → ( 𝑇𝑥) ∈ 𝑇)
5045, 46, 48, 49syl3anc 1477 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → ( 𝑇𝑥) ∈ 𝑇)
51 simplrl 819 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → 𝐹: 𝑆 𝑇)
52 ffun 6209 . . . . . . . . . . . . . 14 (𝐹: 𝑆 𝑇 → Fun 𝐹)
53 difpreima 6506 . . . . . . . . . . . . . 14 (Fun 𝐹 → (𝐹 “ ( 𝑇𝑥)) = ((𝐹 𝑇) ∖ (𝐹𝑥)))
5451, 52, 533syl 18 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → (𝐹 “ ( 𝑇𝑥)) = ((𝐹 𝑇) ∖ (𝐹𝑥)))
5539difeq1d 3870 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → ((𝐹 𝑇) ∖ (𝐹𝑥)) = ( 𝑆 ∖ (𝐹𝑥)))
5655adantr 472 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → ((𝐹 𝑇) ∖ (𝐹𝑥)) = ( 𝑆 ∖ (𝐹𝑥)))
571ad2antrr 764 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → 𝑆 ran sigAlgebra)
5857, 25syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → 𝑆𝑆)
59 imaeq2 5620 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑥 → (𝐹𝑎) = (𝐹𝑥))
6059eleq1d 2824 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑥 → ((𝐹𝑎) ∈ 𝑆 ↔ (𝐹𝑥) ∈ 𝑆))
6160elrab 3504 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ↔ (𝑥𝑇 ∧ (𝐹𝑥) ∈ 𝑆))
6261simprbi 483 . . . . . . . . . . . . . . . 16 (𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} → (𝐹𝑥) ∈ 𝑆)
6362adantl 473 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → (𝐹𝑥) ∈ 𝑆)
64 difelsiga 30505 . . . . . . . . . . . . . . 15 ((𝑆 ran sigAlgebra ∧ 𝑆𝑆 ∧ (𝐹𝑥) ∈ 𝑆) → ( 𝑆 ∖ (𝐹𝑥)) ∈ 𝑆)
6557, 58, 63, 64syl3anc 1477 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → ( 𝑆 ∖ (𝐹𝑥)) ∈ 𝑆)
6656, 65eqeltrd 2839 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → ((𝐹 𝑇) ∖ (𝐹𝑥)) ∈ 𝑆)
6754, 66eqeltrd 2839 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → (𝐹 “ ( 𝑇𝑥)) ∈ 𝑆)
68 imaeq2 5620 . . . . . . . . . . . . . 14 (𝑎 = ( 𝑇𝑥) → (𝐹𝑎) = (𝐹 “ ( 𝑇𝑥)))
6968eleq1d 2824 . . . . . . . . . . . . 13 (𝑎 = ( 𝑇𝑥) → ((𝐹𝑎) ∈ 𝑆 ↔ (𝐹 “ ( 𝑇𝑥)) ∈ 𝑆))
7069elrab 3504 . . . . . . . . . . . 12 (( 𝑇𝑥) ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ↔ (( 𝑇𝑥) ∈ 𝑇 ∧ (𝐹 “ ( 𝑇𝑥)) ∈ 𝑆))
7150, 67, 70sylanbrc 701 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → ( 𝑇𝑥) ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})
7271ralrimiva 3104 . . . . . . . . . 10 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → ∀𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ( 𝑇𝑥) ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})
736ad3antrrr 768 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → 𝑇 ran sigAlgebra)
74 sspwb 5066 . . . . . . . . . . . . . . . . 17 ({𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ⊆ 𝑇 ↔ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ⊆ 𝒫 𝑇)
7534, 74mpbi 220 . . . . . . . . . . . . . . . 16 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ⊆ 𝒫 𝑇
7675sseli 3740 . . . . . . . . . . . . . . 15 (𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} → 𝑥 ∈ 𝒫 𝑇)
7776ad2antlr 765 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → 𝑥 ∈ 𝒫 𝑇)
78 simpr 479 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → 𝑥 ≼ ω)
79 sigaclcu 30489 . . . . . . . . . . . . . 14 ((𝑇 ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑇𝑥 ≼ ω) → 𝑥𝑇)
8073, 77, 78, 79syl3anc 1477 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → 𝑥𝑇)
81 simpllr 817 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆))
8281simpld 477 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → 𝐹: 𝑆 𝑇)
83 unipreima 29755 . . . . . . . . . . . . . . 15 (Fun 𝐹 → (𝐹 𝑥) = 𝑦𝑥 (𝐹𝑦))
8482, 52, 833syl 18 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → (𝐹 𝑥) = 𝑦𝑥 (𝐹𝑦))
851ad3antrrr 768 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → 𝑆 ran sigAlgebra)
86 simpr 479 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) ∧ 𝑦𝑥) → 𝑦𝑥)
87 simpllr 817 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) ∧ 𝑦𝑥) → 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})
88 elelpwi 4315 . . . . . . . . . . . . . . . . . 18 ((𝑦𝑥𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → 𝑦 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})
8986, 87, 88syl2anc 696 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) ∧ 𝑦𝑥) → 𝑦 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})
90 imaeq2 5620 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑦 → (𝐹𝑎) = (𝐹𝑦))
9190eleq1d 2824 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑦 → ((𝐹𝑎) ∈ 𝑆 ↔ (𝐹𝑦) ∈ 𝑆))
9291elrab 3504 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ↔ (𝑦𝑇 ∧ (𝐹𝑦) ∈ 𝑆))
9392simprbi 483 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} → (𝐹𝑦) ∈ 𝑆)
9489, 93syl 17 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ 𝑆)
9594ralrimiva 3104 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → ∀𝑦𝑥 (𝐹𝑦) ∈ 𝑆)
96 nfcv 2902 . . . . . . . . . . . . . . . 16 𝑦𝑥
9796sigaclcuni 30490 . . . . . . . . . . . . . . 15 ((𝑆 ran sigAlgebra ∧ ∀𝑦𝑥 (𝐹𝑦) ∈ 𝑆𝑥 ≼ ω) → 𝑦𝑥 (𝐹𝑦) ∈ 𝑆)
9885, 95, 78, 97syl3anc 1477 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → 𝑦𝑥 (𝐹𝑦) ∈ 𝑆)
9984, 98eqeltrd 2839 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → (𝐹 𝑥) ∈ 𝑆)
100 imaeq2 5620 . . . . . . . . . . . . . . 15 (𝑎 = 𝑥 → (𝐹𝑎) = (𝐹 𝑥))
101100eleq1d 2824 . . . . . . . . . . . . . 14 (𝑎 = 𝑥 → ((𝐹𝑎) ∈ 𝑆 ↔ (𝐹 𝑥) ∈ 𝑆))
102101elrab 3504 . . . . . . . . . . . . 13 ( 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ↔ ( 𝑥𝑇 ∧ (𝐹 𝑥) ∈ 𝑆))
10380, 99, 102sylanbrc 701 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})
104103ex 449 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → (𝑥 ≼ ω → 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}))
105104ralrimiva 3104 . . . . . . . . . 10 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → ∀𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} (𝑥 ≼ ω → 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}))
10644, 72, 1053jca 1123 . . . . . . . . 9 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → ( 𝑇 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∧ ∀𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ( 𝑇𝑥) ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∧ ∀𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} (𝑥 ≼ ω → 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})))
107 rabexg 4963 . . . . . . . . . . 11 (𝑇 ran sigAlgebra → {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∈ V)
108 issiga 30483 . . . . . . . . . . 11 ({𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∈ V → ({𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∈ (sigAlgebra‘ 𝑇) ↔ ({𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ⊆ 𝒫 𝑇 ∧ ( 𝑇 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∧ ∀𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ( 𝑇𝑥) ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∧ ∀𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} (𝑥 ≼ ω → 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})))))
1096, 107, 1083syl 18 . . . . . . . . . 10 (𝜑 → ({𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∈ (sigAlgebra‘ 𝑇) ↔ ({𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ⊆ 𝒫 𝑇 ∧ ( 𝑇 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∧ ∀𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ( 𝑇𝑥) ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∧ ∀𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} (𝑥 ≼ ω → 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})))))
110109biimpar 503 . . . . . . . . 9 ((𝜑 ∧ ({𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ⊆ 𝒫 𝑇 ∧ ( 𝑇 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∧ ∀𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ( 𝑇𝑥) ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∧ ∀𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} (𝑥 ≼ ω → 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})))) → {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∈ (sigAlgebra‘ 𝑇))
11133, 37, 106, 110syl12anc 1475 . . . . . . . 8 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∈ (sigAlgebra‘ 𝑇))
1123unieqd 4598 . . . . . . . . . . . 12 (𝜑 𝑇 = (sigaGen‘𝐾))
113 unisg 30515 . . . . . . . . . . . . 13 (𝐾 ∈ V → (sigaGen‘𝐾) = 𝐾)
1144, 113syl 17 . . . . . . . . . . . 12 (𝜑 (sigaGen‘𝐾) = 𝐾)
115112, 114eqtrd 2794 . . . . . . . . . . 11 (𝜑 𝑇 = 𝐾)
116115fveq2d 6356 . . . . . . . . . 10 (𝜑 → (sigAlgebra‘ 𝑇) = (sigAlgebra‘ 𝐾))
117116eleq2d 2825 . . . . . . . . 9 (𝜑 → ({𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∈ (sigAlgebra‘ 𝑇) ↔ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∈ (sigAlgebra‘ 𝐾)))
118117adantr 472 . . . . . . . 8 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → ({𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∈ (sigAlgebra‘ 𝑇) ↔ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∈ (sigAlgebra‘ 𝐾)))
119111, 118mpbid 222 . . . . . . 7 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∈ (sigAlgebra‘ 𝐾))
12015adantr 472 . . . . . . . 8 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → 𝐾𝑇)
121 simprr 813 . . . . . . . 8 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)
122 ssrab 3821 . . . . . . . 8 (𝐾 ⊆ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ↔ (𝐾𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆))
123120, 121, 122sylanbrc 701 . . . . . . 7 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → 𝐾 ⊆ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})
124 sigagenss 30521 . . . . . . 7 (({𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∈ (sigAlgebra‘ 𝐾) ∧ 𝐾 ⊆ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → (sigaGen‘𝐾) ⊆ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})
125119, 123, 124syl2anc 696 . . . . . 6 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → (sigaGen‘𝐾) ⊆ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})
12632, 125eqsstrd 3780 . . . . 5 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → 𝑇 ⊆ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})
12734a1i 11 . . . . 5 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ⊆ 𝑇)
128126, 127eqssd 3761 . . . 4 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → 𝑇 = {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})
129 rabid2 3257 . . . 4 (𝑇 = {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ↔ ∀𝑎𝑇 (𝐹𝑎) ∈ 𝑆)
130128, 129sylib 208 . . 3 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → ∀𝑎𝑇 (𝐹𝑎) ∈ 𝑆)
1311adantr 472 . . . 4 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → 𝑆 ran sigAlgebra)
1326adantr 472 . . . 4 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → 𝑇 ran sigAlgebra)
133131, 132ismbfm 30623 . . 3 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹 ∈ ( 𝑇𝑚 𝑆) ∧ ∀𝑎𝑇 (𝐹𝑎) ∈ 𝑆)))
13431, 130, 133mpbir2and 995 . 2 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → 𝐹 ∈ (𝑆MblFnM𝑇))
13521, 134impbida 913 1 (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wral 3050  {crab 3054  Vcvv 3340  cdif 3712  wss 3715  𝒫 cpw 4302   cuni 4588   ciun 4672   class class class wbr 4804  ccnv 5265  ran crn 5267  cima 5269  Fun wfun 6043  wf 6045  cfv 6049  (class class class)co 6813  ωcom 7230  𝑚 cmap 8023  cdom 8119  sigAlgebracsiga 30479  sigaGencsigagen 30510  MblFnMcmbfm 30621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-ac2 9477
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-oi 8580  df-card 8955  df-acn 8958  df-ac 9129  df-cda 9182  df-siga 30480  df-sigagen 30511  df-mbfm 30622
This theorem is referenced by:  cnmbfm  30634  mbfmco2  30636
  Copyright terms: Public domain W3C validator