MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imainss Structured version   Visualization version   GIF version

Theorem imainss 5689
Description: An upper bound for intersection with an image. Theorem 41 of [Suppes] p. 66. (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
imainss ((𝑅𝐴) ∩ 𝐵) ⊆ (𝑅 “ (𝐴 ∩ (𝑅𝐵)))

Proof of Theorem imainss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3354 . . . . . . . . . . 11 𝑦 ∈ V
2 vex 3354 . . . . . . . . . . 11 𝑥 ∈ V
31, 2brcnv 5443 . . . . . . . . . 10 (𝑦𝑅𝑥𝑥𝑅𝑦)
4 19.8a 2206 . . . . . . . . . 10 ((𝑦𝐵𝑦𝑅𝑥) → ∃𝑦(𝑦𝐵𝑦𝑅𝑥))
53, 4sylan2br 582 . . . . . . . . 9 ((𝑦𝐵𝑥𝑅𝑦) → ∃𝑦(𝑦𝐵𝑦𝑅𝑥))
65ancoms 455 . . . . . . . 8 ((𝑥𝑅𝑦𝑦𝐵) → ∃𝑦(𝑦𝐵𝑦𝑅𝑥))
76anim2i 603 . . . . . . 7 ((𝑥𝐴 ∧ (𝑥𝑅𝑦𝑦𝐵)) → (𝑥𝐴 ∧ ∃𝑦(𝑦𝐵𝑦𝑅𝑥)))
8 simprl 754 . . . . . . 7 ((𝑥𝐴 ∧ (𝑥𝑅𝑦𝑦𝐵)) → 𝑥𝑅𝑦)
97, 8jca 501 . . . . . 6 ((𝑥𝐴 ∧ (𝑥𝑅𝑦𝑦𝐵)) → ((𝑥𝐴 ∧ ∃𝑦(𝑦𝐵𝑦𝑅𝑥)) ∧ 𝑥𝑅𝑦))
109anassrs 458 . . . . 5 (((𝑥𝐴𝑥𝑅𝑦) ∧ 𝑦𝐵) → ((𝑥𝐴 ∧ ∃𝑦(𝑦𝐵𝑦𝑅𝑥)) ∧ 𝑥𝑅𝑦))
11 elin 3947 . . . . . . 7 (𝑥 ∈ (𝐴 ∩ (𝑅𝐵)) ↔ (𝑥𝐴𝑥 ∈ (𝑅𝐵)))
122elima2 5613 . . . . . . . 8 (𝑥 ∈ (𝑅𝐵) ↔ ∃𝑦(𝑦𝐵𝑦𝑅𝑥))
1312anbi2i 609 . . . . . . 7 ((𝑥𝐴𝑥 ∈ (𝑅𝐵)) ↔ (𝑥𝐴 ∧ ∃𝑦(𝑦𝐵𝑦𝑅𝑥)))
1411, 13bitri 264 . . . . . 6 (𝑥 ∈ (𝐴 ∩ (𝑅𝐵)) ↔ (𝑥𝐴 ∧ ∃𝑦(𝑦𝐵𝑦𝑅𝑥)))
1514anbi1i 610 . . . . 5 ((𝑥 ∈ (𝐴 ∩ (𝑅𝐵)) ∧ 𝑥𝑅𝑦) ↔ ((𝑥𝐴 ∧ ∃𝑦(𝑦𝐵𝑦𝑅𝑥)) ∧ 𝑥𝑅𝑦))
1610, 15sylibr 224 . . . 4 (((𝑥𝐴𝑥𝑅𝑦) ∧ 𝑦𝐵) → (𝑥 ∈ (𝐴 ∩ (𝑅𝐵)) ∧ 𝑥𝑅𝑦))
1716eximi 1910 . . 3 (∃𝑥((𝑥𝐴𝑥𝑅𝑦) ∧ 𝑦𝐵) → ∃𝑥(𝑥 ∈ (𝐴 ∩ (𝑅𝐵)) ∧ 𝑥𝑅𝑦))
181elima2 5613 . . . . 5 (𝑦 ∈ (𝑅𝐴) ↔ ∃𝑥(𝑥𝐴𝑥𝑅𝑦))
1918anbi1i 610 . . . 4 ((𝑦 ∈ (𝑅𝐴) ∧ 𝑦𝐵) ↔ (∃𝑥(𝑥𝐴𝑥𝑅𝑦) ∧ 𝑦𝐵))
20 elin 3947 . . . 4 (𝑦 ∈ ((𝑅𝐴) ∩ 𝐵) ↔ (𝑦 ∈ (𝑅𝐴) ∧ 𝑦𝐵))
21 19.41v 2029 . . . 4 (∃𝑥((𝑥𝐴𝑥𝑅𝑦) ∧ 𝑦𝐵) ↔ (∃𝑥(𝑥𝐴𝑥𝑅𝑦) ∧ 𝑦𝐵))
2219, 20, 213bitr4i 292 . . 3 (𝑦 ∈ ((𝑅𝐴) ∩ 𝐵) ↔ ∃𝑥((𝑥𝐴𝑥𝑅𝑦) ∧ 𝑦𝐵))
231elima2 5613 . . 3 (𝑦 ∈ (𝑅 “ (𝐴 ∩ (𝑅𝐵))) ↔ ∃𝑥(𝑥 ∈ (𝐴 ∩ (𝑅𝐵)) ∧ 𝑥𝑅𝑦))
2417, 22, 233imtr4i 281 . 2 (𝑦 ∈ ((𝑅𝐴) ∩ 𝐵) → 𝑦 ∈ (𝑅 “ (𝐴 ∩ (𝑅𝐵))))
2524ssriv 3756 1 ((𝑅𝐴) ∩ 𝐵) ⊆ (𝑅 “ (𝐴 ∩ (𝑅𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wa 382  wex 1852  wcel 2145  cin 3722  wss 3723   class class class wbr 4786  ccnv 5248  cima 5252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-br 4787  df-opab 4847  df-xp 5255  df-cnv 5257  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator