![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > imaindm | Structured version Visualization version GIF version |
Description: The image is unaffected by intersection with the domain. (Contributed by Scott Fenton, 17-Dec-2021.) |
Ref | Expression |
---|---|
imaindm | ⊢ (𝑅 “ 𝐴) = (𝑅 “ (𝐴 ∩ dom 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3354 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
2 | vex 3354 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
3 | 1, 2 | breldm 5466 | . . . . . 6 ⊢ (𝑦𝑅𝑥 → 𝑦 ∈ dom 𝑅) |
4 | 3 | pm4.71ri 550 | . . . . 5 ⊢ (𝑦𝑅𝑥 ↔ (𝑦 ∈ dom 𝑅 ∧ 𝑦𝑅𝑥)) |
5 | 4 | rexbii 3189 | . . . 4 ⊢ (∃𝑦 ∈ 𝐴 𝑦𝑅𝑥 ↔ ∃𝑦 ∈ 𝐴 (𝑦 ∈ dom 𝑅 ∧ 𝑦𝑅𝑥)) |
6 | elin 3947 | . . . . . . 7 ⊢ (𝑦 ∈ (𝐴 ∩ dom 𝑅) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ dom 𝑅)) | |
7 | 6 | anbi1i 610 | . . . . . 6 ⊢ ((𝑦 ∈ (𝐴 ∩ dom 𝑅) ∧ 𝑦𝑅𝑥) ↔ ((𝑦 ∈ 𝐴 ∧ 𝑦 ∈ dom 𝑅) ∧ 𝑦𝑅𝑥)) |
8 | anass 454 | . . . . . 6 ⊢ (((𝑦 ∈ 𝐴 ∧ 𝑦 ∈ dom 𝑅) ∧ 𝑦𝑅𝑥) ↔ (𝑦 ∈ 𝐴 ∧ (𝑦 ∈ dom 𝑅 ∧ 𝑦𝑅𝑥))) | |
9 | 7, 8 | bitri 264 | . . . . 5 ⊢ ((𝑦 ∈ (𝐴 ∩ dom 𝑅) ∧ 𝑦𝑅𝑥) ↔ (𝑦 ∈ 𝐴 ∧ (𝑦 ∈ dom 𝑅 ∧ 𝑦𝑅𝑥))) |
10 | 9 | rexbii2 3187 | . . . 4 ⊢ (∃𝑦 ∈ (𝐴 ∩ dom 𝑅)𝑦𝑅𝑥 ↔ ∃𝑦 ∈ 𝐴 (𝑦 ∈ dom 𝑅 ∧ 𝑦𝑅𝑥)) |
11 | 5, 10 | bitr4i 267 | . . 3 ⊢ (∃𝑦 ∈ 𝐴 𝑦𝑅𝑥 ↔ ∃𝑦 ∈ (𝐴 ∩ dom 𝑅)𝑦𝑅𝑥) |
12 | 2 | elima 5611 | . . 3 ⊢ (𝑥 ∈ (𝑅 “ 𝐴) ↔ ∃𝑦 ∈ 𝐴 𝑦𝑅𝑥) |
13 | 2 | elima 5611 | . . 3 ⊢ (𝑥 ∈ (𝑅 “ (𝐴 ∩ dom 𝑅)) ↔ ∃𝑦 ∈ (𝐴 ∩ dom 𝑅)𝑦𝑅𝑥) |
14 | 11, 12, 13 | 3bitr4i 292 | . 2 ⊢ (𝑥 ∈ (𝑅 “ 𝐴) ↔ 𝑥 ∈ (𝑅 “ (𝐴 ∩ dom 𝑅))) |
15 | 14 | eqriv 2768 | 1 ⊢ (𝑅 “ 𝐴) = (𝑅 “ (𝐴 ∩ dom 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∃wrex 3062 ∩ cin 3722 class class class wbr 4787 dom cdm 5250 “ cima 5253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pr 5035 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-br 4788 df-opab 4848 df-xp 5256 df-cnv 5258 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 |
This theorem is referenced by: madeval2 32273 |
Copyright terms: Public domain | W3C validator |