![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > imaiinfv | Structured version Visualization version GIF version |
Description: Indexed intersection of an image. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
imaiinfv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ∩ 𝑥 ∈ 𝐵 (𝐹‘𝑥) = ∩ (𝐹 “ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnssres 6165 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) Fn 𝐵) | |
2 | fniinfv 6419 | . . 3 ⊢ ((𝐹 ↾ 𝐵) Fn 𝐵 → ∩ 𝑥 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑥) = ∩ ran (𝐹 ↾ 𝐵)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ∩ 𝑥 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑥) = ∩ ran (𝐹 ↾ 𝐵)) |
4 | fvres 6368 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝑥) = (𝐹‘𝑥)) | |
5 | 4 | iineq2i 4692 | . . 3 ⊢ ∩ 𝑥 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑥) = ∩ 𝑥 ∈ 𝐵 (𝐹‘𝑥) |
6 | 5 | eqcomi 2769 | . 2 ⊢ ∩ 𝑥 ∈ 𝐵 (𝐹‘𝑥) = ∩ 𝑥 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑥) |
7 | df-ima 5279 | . . 3 ⊢ (𝐹 “ 𝐵) = ran (𝐹 ↾ 𝐵) | |
8 | 7 | inteqi 4631 | . 2 ⊢ ∩ (𝐹 “ 𝐵) = ∩ ran (𝐹 ↾ 𝐵) |
9 | 3, 6, 8 | 3eqtr4g 2819 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ∩ 𝑥 ∈ 𝐵 (𝐹‘𝑥) = ∩ (𝐹 “ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ⊆ wss 3715 ∩ cint 4627 ∩ ciin 4673 ran crn 5267 ↾ cres 5268 “ cima 5269 Fn wfn 6044 ‘cfv 6049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-int 4628 df-iin 4675 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-fv 6057 |
This theorem is referenced by: elrfirn 37760 |
Copyright terms: Public domain | W3C validator |