![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imaexg | Structured version Visualization version GIF version |
Description: The image of a set is a set. Theorem 3.17 of [Monk1] p. 39. (Contributed by NM, 24-Jul-1995.) |
Ref | Expression |
---|---|
imaexg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 “ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imassrn 5512 | . 2 ⊢ (𝐴 “ 𝐵) ⊆ ran 𝐴 | |
2 | rnexg 7140 | . 2 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) | |
3 | ssexg 4837 | . 2 ⊢ (((𝐴 “ 𝐵) ⊆ ran 𝐴 ∧ ran 𝐴 ∈ V) → (𝐴 “ 𝐵) ∈ V) | |
4 | 1, 2, 3 | sylancr 696 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 “ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2030 Vcvv 3231 ⊆ wss 3607 ran crn 5144 “ cima 5146 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-xp 5149 df-cnv 5151 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 |
This theorem is referenced by: imaex 7146 ecexg 7791 fopwdom 8109 gsumvalx 17317 gsum2dlem1 18415 gsum2dlem2 18416 gsum2d 18417 xkococnlem 21510 qtopval 21546 ustuqtop4 22095 utopsnnei 22100 fmucnd 22143 metustel 22402 metustss 22403 metustfbas 22409 metuel2 22417 psmetutop 22419 restmetu 22422 cnheiborlem 22800 itg2gt0 23572 shsval 28299 nlfnval 28868 ffsrn 29632 gsummpt2co 29908 gsummpt2d 29909 locfinreflem 30035 qqhval 30146 esum2d 30283 mbfmcnt 30458 sitgaddlemb 30538 eulerpartgbij 30562 eulerpartlemgs2 30570 orvcval 30647 coinfliprv 30672 ballotlemrval 30707 ballotlem7 30725 msrval 31561 mthmval 31598 dfrdg2 31825 brapply 32170 dfrdg4 32183 tailval 32493 bj-clex 33077 isbasisrelowl 33336 relowlpssretop 33342 ptrest 33538 lkrval 34693 isnacs3 37590 pw2f1ocnv 37921 pw2f1o2val 37923 lmhmlnmsplit 37974 intima0 38256 elintima 38262 brtrclfv2 38336 frege98 38572 frege110 38584 frege133 38607 binomcxplemnotnn0 38872 imaexi 39729 tgqioo2 40092 sge0f1o 40917 smfco 41330 |
Copyright terms: Public domain | W3C validator |