![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imaex | Structured version Visualization version GIF version |
Description: The image of a set is a set. Theorem 3.17 of [Monk1] p. 39. (Contributed by JJ, 24-Sep-2021.) |
Ref | Expression |
---|---|
imaex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
imaex | ⊢ (𝐴 “ 𝐵) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | imaexg 7145 | . 2 ⊢ (𝐴 ∈ V → (𝐴 “ 𝐵) ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 “ 𝐵) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2030 Vcvv 3231 “ cima 5146 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-xp 5149 df-cnv 5151 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 |
This theorem is referenced by: frxp 7332 pw2f1o 8106 ssenen 8175 fiint 8278 fissuni 8312 fipreima 8313 marypha1lem 8380 infxpenlem 8874 ackbij2lem2 9100 enfin2i 9181 fin1a2lem7 9266 fpwwe 9506 canthwelem 9510 tskuni 9643 isacs4lem 17215 gicsubgen 17767 gsumzaddlem 18367 isunit 18703 evpmss 19980 psgnevpmb 19981 ptbasfi 21432 hmphdis 21647 ustuqtop0 22091 utopsnneiplem 22098 neipcfilu 22147 nghmfval 22573 fta1glem2 23971 fta1blem 23973 lgsqrlem4 25119 legval 25524 |
Copyright terms: Public domain | W3C validator |