![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imaeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for image. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
imaeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseq1 5546 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) | |
2 | 1 | rneqd 5509 | . 2 ⊢ (𝐴 = 𝐵 → ran (𝐴 ↾ 𝐶) = ran (𝐵 ↾ 𝐶)) |
3 | df-ima 5280 | . 2 ⊢ (𝐴 “ 𝐶) = ran (𝐴 ↾ 𝐶) | |
4 | df-ima 5280 | . 2 ⊢ (𝐵 “ 𝐶) = ran (𝐵 ↾ 𝐶) | |
5 | 2, 3, 4 | 3eqtr4g 2820 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ran crn 5268 ↾ cres 5269 “ cima 5270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-rab 3060 df-v 3343 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-sn 4323 df-pr 4325 df-op 4329 df-br 4806 df-opab 4866 df-cnv 5275 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 |
This theorem is referenced by: imaeq1i 5622 imaeq1d 5624 suppval 7467 eceq2 7954 marypha1lem 8507 marypha1 8508 ackbij2lem2 9275 ackbij2lem3 9276 r1om 9279 limsupval 14425 isacs1i 16540 mreacs 16541 islindf 20374 iscnp 21264 xkoccn 21645 xkohaus 21679 xkoco1cn 21683 xkoco2cn 21684 xkococnlem 21685 xkococn 21686 xkoinjcn 21713 fmval 21969 fmf 21971 utoptop 22260 restutop 22263 restutopopn 22264 ustuqtoplem 22265 ustuqtop1 22267 ustuqtop2 22268 ustuqtop4 22270 ustuqtop5 22271 utopsnneiplem 22273 utopsnnei 22275 neipcfilu 22322 psmetutop 22594 cfilfval 23283 elply2 24172 coeeu 24201 coelem 24202 coeeq 24203 dmarea 24905 mclsax 31795 tailfval 32695 bj-cleq 33274 poimirlem15 33756 poimirlem24 33765 brtrclfv2 38540 liminfval 40513 |
Copyright terms: Public domain | W3C validator |