MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imadomg Structured version   Visualization version   GIF version

Theorem imadomg 9579
Description: An image of a function under a set is dominated by the set. Proposition 10.34 of [TakeutiZaring] p. 92. (Contributed by NM, 23-Jul-2004.)
Assertion
Ref Expression
imadomg (𝐴𝐵 → (Fun 𝐹 → (𝐹𝐴) ≼ 𝐴))

Proof of Theorem imadomg
StepHypRef Expression
1 df-ima 5276 . . . 4 (𝐹𝐴) = ran (𝐹𝐴)
2 resfunexg 6642 . . . . . 6 ((Fun 𝐹𝐴𝐵) → (𝐹𝐴) ∈ V)
3 dmexg 7265 . . . . . 6 ((𝐹𝐴) ∈ V → dom (𝐹𝐴) ∈ V)
42, 3syl 17 . . . . 5 ((Fun 𝐹𝐴𝐵) → dom (𝐹𝐴) ∈ V)
5 funres 6083 . . . . . . 7 (Fun 𝐹 → Fun (𝐹𝐴))
6 funforn 6278 . . . . . . 7 (Fun (𝐹𝐴) ↔ (𝐹𝐴):dom (𝐹𝐴)–onto→ran (𝐹𝐴))
75, 6sylib 209 . . . . . 6 (Fun 𝐹 → (𝐹𝐴):dom (𝐹𝐴)–onto→ran (𝐹𝐴))
87adantr 467 . . . . 5 ((Fun 𝐹𝐴𝐵) → (𝐹𝐴):dom (𝐹𝐴)–onto→ran (𝐹𝐴))
9 fodomg 9568 . . . . 5 (dom (𝐹𝐴) ∈ V → ((𝐹𝐴):dom (𝐹𝐴)–onto→ran (𝐹𝐴) → ran (𝐹𝐴) ≼ dom (𝐹𝐴)))
104, 8, 9sylc 65 . . . 4 ((Fun 𝐹𝐴𝐵) → ran (𝐹𝐴) ≼ dom (𝐹𝐴))
111, 10syl5eqbr 4832 . . 3 ((Fun 𝐹𝐴𝐵) → (𝐹𝐴) ≼ dom (𝐹𝐴))
1211expcom 399 . 2 (𝐴𝐵 → (Fun 𝐹 → (𝐹𝐴) ≼ dom (𝐹𝐴)))
13 dmres 5571 . . . . . 6 dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹)
14 inss1 3988 . . . . . 6 (𝐴 ∩ dom 𝐹) ⊆ 𝐴
1513, 14eqsstri 3791 . . . . 5 dom (𝐹𝐴) ⊆ 𝐴
16 ssdomg 8176 . . . . 5 (𝐴𝐵 → (dom (𝐹𝐴) ⊆ 𝐴 → dom (𝐹𝐴) ≼ 𝐴))
1715, 16mpi 20 . . . 4 (𝐴𝐵 → dom (𝐹𝐴) ≼ 𝐴)
18 domtr 8183 . . . 4 (((𝐹𝐴) ≼ dom (𝐹𝐴) ∧ dom (𝐹𝐴) ≼ 𝐴) → (𝐹𝐴) ≼ 𝐴)
1917, 18sylan2 581 . . 3 (((𝐹𝐴) ≼ dom (𝐹𝐴) ∧ 𝐴𝐵) → (𝐹𝐴) ≼ 𝐴)
2019expcom 399 . 2 (𝐴𝐵 → ((𝐹𝐴) ≼ dom (𝐹𝐴) → (𝐹𝐴) ≼ 𝐴))
2112, 20syld 47 1 (𝐴𝐵 → (Fun 𝐹 → (𝐹𝐴) ≼ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wcel 2148  Vcvv 3355  cin 3728  wss 3729   class class class wbr 4797  dom cdm 5263  ran crn 5264  cres 5265  cima 5266  Fun wfun 6036  ontowfo 6040  cdom 8128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1873  ax-4 1888  ax-5 1994  ax-6 2060  ax-7 2096  ax-8 2150  ax-9 2157  ax-10 2177  ax-11 2193  ax-12 2206  ax-13 2411  ax-ext 2754  ax-rep 4917  ax-sep 4928  ax-nul 4936  ax-pow 4988  ax-pr 5048  ax-un 7117  ax-ac2 9508
This theorem depends on definitions:  df-bi 198  df-an 384  df-or 864  df-3or 1099  df-3an 1100  df-tru 1637  df-ex 1856  df-nf 1861  df-sb 2053  df-eu 2625  df-mo 2626  df-clab 2761  df-cleq 2767  df-clel 2770  df-nfc 2905  df-ne 2947  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3357  df-sbc 3594  df-csb 3689  df-dif 3732  df-un 3734  df-in 3736  df-ss 3743  df-pss 3745  df-nul 4074  df-if 4236  df-pw 4309  df-sn 4327  df-pr 4329  df-tp 4331  df-op 4333  df-uni 4586  df-int 4623  df-iun 4667  df-br 4798  df-opab 4860  df-mpt 4877  df-tr 4900  df-id 5171  df-eprel 5176  df-po 5184  df-so 5185  df-fr 5222  df-se 5223  df-we 5224  df-xp 5269  df-rel 5270  df-cnv 5271  df-co 5272  df-dm 5273  df-rn 5274  df-res 5275  df-ima 5276  df-pred 5834  df-ord 5880  df-on 5881  df-suc 5883  df-iota 6005  df-fun 6044  df-fn 6045  df-f 6046  df-f1 6047  df-fo 6048  df-f1o 6049  df-fv 6050  df-isom 6051  df-riota 6773  df-ov 6815  df-oprab 6816  df-mpt2 6817  df-1st 7336  df-2nd 7337  df-wrecs 7580  df-recs 7642  df-er 7917  df-map 8032  df-en 8131  df-dom 8132  df-card 8986  df-acn 8989  df-ac 9160
This theorem is referenced by:  fimact  9580  uniimadom  9589  hausmapdom  21544
  Copyright terms: Public domain W3C validator