Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  imadmres Structured version   Visualization version   GIF version

 Description: The image of the domain of a restriction. (Contributed by NM, 8-Apr-2007.)
Assertion
Ref Expression
imadmres (𝐴 “ dom (𝐴𝐵)) = (𝐴𝐵)

StepHypRef Expression
1 resdmres 5786 . . 3 (𝐴 ↾ dom (𝐴𝐵)) = (𝐴𝐵)
21rneqi 5507 . 2 ran (𝐴 ↾ dom (𝐴𝐵)) = ran (𝐴𝐵)
3 df-ima 5279 . 2 (𝐴 “ dom (𝐴𝐵)) = ran (𝐴 ↾ dom (𝐴𝐵))
4 df-ima 5279 . 2 (𝐴𝐵) = ran (𝐴𝐵)
52, 3, 43eqtr4i 2792 1 (𝐴 “ dom (𝐴𝐵)) = (𝐴𝐵)
 Colors of variables: wff setvar class Syntax hints:   = wceq 1632  dom cdm 5266  ran crn 5267   ↾ cres 5268   “ cima 5269 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-br 4805  df-opab 4865  df-xp 5272  df-rel 5273  df-cnv 5274  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279 This theorem is referenced by:  ssimaex  6425  fnwelem  7460  imafi  8424  r0weon  9025  limsupgle  14407  kqdisj  21737
 Copyright terms: Public domain W3C validator