![]() |
Mathbox for Brendan Leahy |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > imadifss | Structured version Visualization version GIF version |
Description: The difference of images is a subset of the image of the difference. (Contributed by Brendan Leahy, 21-Aug-2020.) |
Ref | Expression |
---|---|
imadifss | ⊢ ((𝐹 “ 𝐴) ∖ (𝐹 “ 𝐵)) ⊆ (𝐹 “ (𝐴 ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun2 3810 | . . . . 5 ⊢ 𝐴 ⊆ (𝐵 ∪ 𝐴) | |
2 | undif2 4077 | . . . . 5 ⊢ (𝐵 ∪ (𝐴 ∖ 𝐵)) = (𝐵 ∪ 𝐴) | |
3 | 1, 2 | sseqtr4i 3671 | . . . 4 ⊢ 𝐴 ⊆ (𝐵 ∪ (𝐴 ∖ 𝐵)) |
4 | imass2 5536 | . . . 4 ⊢ (𝐴 ⊆ (𝐵 ∪ (𝐴 ∖ 𝐵)) → (𝐹 “ 𝐴) ⊆ (𝐹 “ (𝐵 ∪ (𝐴 ∖ 𝐵)))) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (𝐹 “ 𝐴) ⊆ (𝐹 “ (𝐵 ∪ (𝐴 ∖ 𝐵))) |
6 | imaundi 5580 | . . 3 ⊢ (𝐹 “ (𝐵 ∪ (𝐴 ∖ 𝐵))) = ((𝐹 “ 𝐵) ∪ (𝐹 “ (𝐴 ∖ 𝐵))) | |
7 | 5, 6 | sseqtri 3670 | . 2 ⊢ (𝐹 “ 𝐴) ⊆ ((𝐹 “ 𝐵) ∪ (𝐹 “ (𝐴 ∖ 𝐵))) |
8 | ssundif 4085 | . 2 ⊢ ((𝐹 “ 𝐴) ⊆ ((𝐹 “ 𝐵) ∪ (𝐹 “ (𝐴 ∖ 𝐵))) ↔ ((𝐹 “ 𝐴) ∖ (𝐹 “ 𝐵)) ⊆ (𝐹 “ (𝐴 ∖ 𝐵))) | |
9 | 7, 8 | mpbi 220 | 1 ⊢ ((𝐹 “ 𝐴) ∖ (𝐹 “ 𝐵)) ⊆ (𝐹 “ (𝐴 ∖ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ∖ cdif 3604 ∪ cun 3605 ⊆ wss 3607 “ cima 5146 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 df-xp 5149 df-cnv 5151 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 |
This theorem is referenced by: poimirlem30 33569 |
Copyright terms: Public domain | W3C validator |