![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imacnvcnv | Structured version Visualization version GIF version |
Description: The image of the double converse of a class. (Contributed by NM, 8-Apr-2007.) |
Ref | Expression |
---|---|
imacnvcnv | ⊢ (◡◡𝐴 “ 𝐵) = (𝐴 “ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rescnvcnv 5755 | . . 3 ⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵) | |
2 | 1 | rneqi 5507 | . 2 ⊢ ran (◡◡𝐴 ↾ 𝐵) = ran (𝐴 ↾ 𝐵) |
3 | df-ima 5279 | . 2 ⊢ (◡◡𝐴 “ 𝐵) = ran (◡◡𝐴 ↾ 𝐵) | |
4 | df-ima 5279 | . 2 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
5 | 2, 3, 4 | 3eqtr4i 2792 | 1 ⊢ (◡◡𝐴 “ 𝐵) = (𝐴 “ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ◡ccnv 5265 ran crn 5267 ↾ cres 5268 “ cima 5269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-opab 4865 df-xp 5272 df-rel 5273 df-cnv 5274 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 |
This theorem is referenced by: curry1 7438 curry2 7441 fnwelem 7461 fpwwe2lem6 9669 fpwwe2lem9 9672 eqglact 17866 hmeoima 21790 hmeocld 21792 hmeocls 21793 hmeontr 21794 reghmph 21818 qtopf1 21841 tgpconncompeqg 22136 imasf1obl 22514 mbfimaopnlem 23641 hmeoclda 32655 |
Copyright terms: Public domain | W3C validator |