MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imacnvcnv Structured version   Visualization version   GIF version

Theorem imacnvcnv 5757
Description: The image of the double converse of a class. (Contributed by NM, 8-Apr-2007.)
Assertion
Ref Expression
imacnvcnv (𝐴𝐵) = (𝐴𝐵)

Proof of Theorem imacnvcnv
StepHypRef Expression
1 rescnvcnv 5755 . . 3 (𝐴𝐵) = (𝐴𝐵)
21rneqi 5507 . 2 ran (𝐴𝐵) = ran (𝐴𝐵)
3 df-ima 5279 . 2 (𝐴𝐵) = ran (𝐴𝐵)
4 df-ima 5279 . 2 (𝐴𝐵) = ran (𝐴𝐵)
52, 3, 43eqtr4i 2792 1 (𝐴𝐵) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1632  ccnv 5265  ran crn 5267  cres 5268  cima 5269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-br 4805  df-opab 4865  df-xp 5272  df-rel 5273  df-cnv 5274  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279
This theorem is referenced by:  curry1  7438  curry2  7441  fnwelem  7461  fpwwe2lem6  9669  fpwwe2lem9  9672  eqglact  17866  hmeoima  21790  hmeocld  21792  hmeocls  21793  hmeontr  21794  reghmph  21818  qtopf1  21841  tgpconncompeqg  22136  imasf1obl  22514  mbfimaopnlem  23641  hmeoclda  32655
  Copyright terms: Public domain W3C validator