Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  imacmp Structured version   Visualization version   GIF version

Theorem imacmp 21402
 Description: The image of a compact set under a continuous function is compact. (Contributed by Mario Carneiro, 18-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
imacmp ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → (𝐾t (𝐹𝐴)) ∈ Comp)

Proof of Theorem imacmp
StepHypRef Expression
1 df-ima 5279 . . 3 (𝐹𝐴) = ran (𝐹𝐴)
21oveq2i 6824 . 2 (𝐾t (𝐹𝐴)) = (𝐾t ran (𝐹𝐴))
3 simpr 479 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → (𝐽t 𝐴) ∈ Comp)
4 simpl 474 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → 𝐹 ∈ (𝐽 Cn 𝐾))
5 inss2 3977 . . . . 5 (𝐴 𝐽) ⊆ 𝐽
6 eqid 2760 . . . . . 6 𝐽 = 𝐽
76cnrest 21291 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐴 𝐽) ⊆ 𝐽) → (𝐹 ↾ (𝐴 𝐽)) ∈ ((𝐽t (𝐴 𝐽)) Cn 𝐾))
84, 5, 7sylancl 697 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → (𝐹 ↾ (𝐴 𝐽)) ∈ ((𝐽t (𝐴 𝐽)) Cn 𝐾))
9 resdmres 5786 . . . . 5 (𝐹 ↾ dom (𝐹𝐴)) = (𝐹𝐴)
10 dmres 5577 . . . . . . 7 dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹)
11 eqid 2760 . . . . . . . . . 10 𝐾 = 𝐾
126, 11cnf 21252 . . . . . . . . 9 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
13 fdm 6212 . . . . . . . . 9 (𝐹: 𝐽 𝐾 → dom 𝐹 = 𝐽)
144, 12, 133syl 18 . . . . . . . 8 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → dom 𝐹 = 𝐽)
1514ineq2d 3957 . . . . . . 7 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → (𝐴 ∩ dom 𝐹) = (𝐴 𝐽))
1610, 15syl5eq 2806 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → dom (𝐹𝐴) = (𝐴 𝐽))
1716reseq2d 5551 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → (𝐹 ↾ dom (𝐹𝐴)) = (𝐹 ↾ (𝐴 𝐽)))
189, 17syl5eqr 2808 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → (𝐹𝐴) = (𝐹 ↾ (𝐴 𝐽)))
19 cmptop 21400 . . . . . . 7 ((𝐽t 𝐴) ∈ Comp → (𝐽t 𝐴) ∈ Top)
2019adantl 473 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → (𝐽t 𝐴) ∈ Top)
21 restrcl 21163 . . . . . 6 ((𝐽t 𝐴) ∈ Top → (𝐽 ∈ V ∧ 𝐴 ∈ V))
226restin 21172 . . . . . 6 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽t 𝐴) = (𝐽t (𝐴 𝐽)))
2320, 21, 223syl 18 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → (𝐽t 𝐴) = (𝐽t (𝐴 𝐽)))
2423oveq1d 6828 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → ((𝐽t 𝐴) Cn 𝐾) = ((𝐽t (𝐴 𝐽)) Cn 𝐾))
258, 18, 243eltr4d 2854 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾))
26 rncmp 21401 . . 3 (((𝐽t 𝐴) ∈ Comp ∧ (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾)) → (𝐾t ran (𝐹𝐴)) ∈ Comp)
273, 25, 26syl2anc 696 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → (𝐾t ran (𝐹𝐴)) ∈ Comp)
282, 27syl5eqel 2843 1 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → (𝐾t (𝐹𝐴)) ∈ Comp)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1632   ∈ wcel 2139  Vcvv 3340   ∩ cin 3714   ⊆ wss 3715  ∪ cuni 4588  dom cdm 5266  ran crn 5267   ↾ cres 5268   “ cima 5269  ⟶wf 6045  (class class class)co 6813   ↾t crest 16283  Topctop 20900   Cn ccn 21230  Compccmp 21391 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-fin 8125  df-fi 8482  df-rest 16285  df-topgen 16306  df-top 20901  df-topon 20918  df-bases 20952  df-cn 21233  df-cmp 21392 This theorem is referenced by:  kgencn3  21563  txkgen  21657  xkoco1cn  21662  xkococnlem  21664  cmphaushmeo  21805  cnheiborlem  22954
 Copyright terms: Public domain W3C validator