![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iitopon | Structured version Visualization version GIF version |
Description: The unit interval is a topological space. (Contributed by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
iitopon | ⊢ II ∈ (TopOn‘(0[,]1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnxmet 22769 | . . 3 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) | |
2 | unitssre 12504 | . . . 4 ⊢ (0[,]1) ⊆ ℝ | |
3 | ax-resscn 10177 | . . . 4 ⊢ ℝ ⊆ ℂ | |
4 | 2, 3 | sstri 3745 | . . 3 ⊢ (0[,]1) ⊆ ℂ |
5 | xmetres2 22359 | . . 3 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (0[,]1) ⊆ ℂ) → ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))) ∈ (∞Met‘(0[,]1))) | |
6 | 1, 4, 5 | mp2an 710 | . 2 ⊢ ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))) ∈ (∞Met‘(0[,]1)) |
7 | df-ii 22873 | . . 3 ⊢ II = (MetOpen‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1)))) | |
8 | 7 | mopntopon 22437 | . 2 ⊢ (((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))) ∈ (∞Met‘(0[,]1)) → II ∈ (TopOn‘(0[,]1))) |
9 | 6, 8 | ax-mp 5 | 1 ⊢ II ∈ (TopOn‘(0[,]1)) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2131 ⊆ wss 3707 × cxp 5256 ↾ cres 5260 ∘ ccom 5262 ‘cfv 6041 (class class class)co 6805 ℂcc 10118 ℝcr 10119 0cc0 10120 1c1 10121 − cmin 10450 [,]cicc 12363 abscabs 14165 ∞Metcxmt 19925 TopOnctopon 20909 IIcii 22871 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 ax-pre-sup 10198 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rmo 3050 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-om 7223 df-1st 7325 df-2nd 7326 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-er 7903 df-map 8017 df-en 8114 df-dom 8115 df-sdom 8116 df-sup 8505 df-inf 8506 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-div 10869 df-nn 11205 df-2 11263 df-3 11264 df-n0 11477 df-z 11562 df-uz 11872 df-q 11974 df-rp 12018 df-xneg 12131 df-xadd 12132 df-xmul 12133 df-icc 12367 df-seq 12988 df-exp 13047 df-cj 14030 df-re 14031 df-im 14032 df-sqrt 14166 df-abs 14167 df-topgen 16298 df-psmet 19932 df-xmet 19933 df-met 19934 df-bl 19935 df-mopn 19936 df-top 20893 df-topon 20910 df-bases 20944 df-ii 22873 |
This theorem is referenced by: iitop 22876 iiuni 22877 icchmeo 22933 htpycom 22968 htpyid 22969 htpyco1 22970 htpyco2 22971 htpycc 22972 phtpycn 22975 phtpy01 22977 isphtpy2d 22979 phtpycom 22980 phtpyid 22981 phtpyco2 22982 phtpycc 22983 reparphti 22989 pcocn 23009 pcohtpylem 23011 pcoptcl 23013 pcopt 23014 pcopt2 23015 pcoass 23016 pcorevcl 23017 pcorevlem 23018 pi1xfrf 23045 pi1xfr 23047 pi1xfrcnvlem 23048 pi1xfrcnv 23049 pi1cof 23051 pi1coghm 23053 xrge0pluscn 30287 ptpconn 31514 indispconn 31515 connpconn 31516 txsconnlem 31521 txsconn 31522 cvxsconn 31524 cvmliftlem8 31573 cvmlift2lem2 31585 cvmlift2lem3 31586 cvmlift2lem6 31589 cvmlift2lem9 31592 cvmlift2lem11 31594 cvmlift2lem12 31595 cvmliftphtlem 31598 cvmlift3lem6 31605 cvmlift3lem9 31608 |
Copyright terms: Public domain | W3C validator |