MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinxprg Structured version   Visualization version   GIF version

Theorem iinxprg 4735
Description: Indexed intersection with an unordered pair index. (Contributed by NM, 25-Jan-2012.)
Hypotheses
Ref Expression
iinxprg.1 (𝑥 = 𝐴𝐶 = 𝐷)
iinxprg.2 (𝑥 = 𝐵𝐶 = 𝐸)
Assertion
Ref Expression
iinxprg ((𝐴𝑉𝐵𝑊) → 𝑥 ∈ {𝐴, 𝐵}𝐶 = (𝐷𝐸))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐸
Allowed substitution hints:   𝐶(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem iinxprg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 iinxprg.1 . . . . 5 (𝑥 = 𝐴𝐶 = 𝐷)
21eleq2d 2836 . . . 4 (𝑥 = 𝐴 → (𝑦𝐶𝑦𝐷))
3 iinxprg.2 . . . . 5 (𝑥 = 𝐵𝐶 = 𝐸)
43eleq2d 2836 . . . 4 (𝑥 = 𝐵 → (𝑦𝐶𝑦𝐸))
52, 4ralprg 4371 . . 3 ((𝐴𝑉𝐵𝑊) → (∀𝑥 ∈ {𝐴, 𝐵}𝑦𝐶 ↔ (𝑦𝐷𝑦𝐸)))
65abbidv 2890 . 2 ((𝐴𝑉𝐵𝑊) → {𝑦 ∣ ∀𝑥 ∈ {𝐴, 𝐵}𝑦𝐶} = {𝑦 ∣ (𝑦𝐷𝑦𝐸)})
7 df-iin 4657 . 2 𝑥 ∈ {𝐴, 𝐵}𝐶 = {𝑦 ∣ ∀𝑥 ∈ {𝐴, 𝐵}𝑦𝐶}
8 df-in 3730 . 2 (𝐷𝐸) = {𝑦 ∣ (𝑦𝐷𝑦𝐸)}
96, 7, 83eqtr4g 2830 1 ((𝐴𝑉𝐵𝑊) → 𝑥 ∈ {𝐴, 𝐵}𝐶 = (𝐷𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  {cab 2757  wral 3061  cin 3722  {cpr 4318   ciin 4655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-v 3353  df-sbc 3588  df-un 3728  df-in 3730  df-sn 4317  df-pr 4319  df-iin 4657
This theorem is referenced by:  pmapmeet  35581  diameetN  36866  dihmeetlem2N  37109  dihmeetcN  37112  dihmeet  37153
  Copyright terms: Public domain W3C validator