![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iinvdif | Structured version Visualization version GIF version |
Description: The indexed intersection of a complement. (Contributed by Gérard Lang, 5-Aug-2018.) |
Ref | Expression |
---|---|
iinvdif | ⊢ ∩ 𝑥 ∈ 𝐴 (V ∖ 𝐵) = (V ∖ ∪ 𝑥 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dif0 3983 | . . . 4 ⊢ (V ∖ ∅) = V | |
2 | 0iun 4609 | . . . . 5 ⊢ ∪ 𝑥 ∈ ∅ 𝐵 = ∅ | |
3 | 2 | difeq2i 3758 | . . . 4 ⊢ (V ∖ ∪ 𝑥 ∈ ∅ 𝐵) = (V ∖ ∅) |
4 | 0iin 4610 | . . . 4 ⊢ ∩ 𝑥 ∈ ∅ (V ∖ 𝐵) = V | |
5 | 1, 3, 4 | 3eqtr4ri 2684 | . . 3 ⊢ ∩ 𝑥 ∈ ∅ (V ∖ 𝐵) = (V ∖ ∪ 𝑥 ∈ ∅ 𝐵) |
6 | iineq1 4567 | . . 3 ⊢ (𝐴 = ∅ → ∩ 𝑥 ∈ 𝐴 (V ∖ 𝐵) = ∩ 𝑥 ∈ ∅ (V ∖ 𝐵)) | |
7 | iuneq1 4566 | . . . 4 ⊢ (𝐴 = ∅ → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ ∅ 𝐵) | |
8 | 7 | difeq2d 3761 | . . 3 ⊢ (𝐴 = ∅ → (V ∖ ∪ 𝑥 ∈ 𝐴 𝐵) = (V ∖ ∪ 𝑥 ∈ ∅ 𝐵)) |
9 | 5, 6, 8 | 3eqtr4a 2711 | . 2 ⊢ (𝐴 = ∅ → ∩ 𝑥 ∈ 𝐴 (V ∖ 𝐵) = (V ∖ ∪ 𝑥 ∈ 𝐴 𝐵)) |
10 | iindif2 4621 | . 2 ⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 (V ∖ 𝐵) = (V ∖ ∪ 𝑥 ∈ 𝐴 𝐵)) | |
11 | 9, 10 | pm2.61ine 2906 | 1 ⊢ ∩ 𝑥 ∈ 𝐴 (V ∖ 𝐵) = (V ∖ ∪ 𝑥 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 Vcvv 3231 ∖ cdif 3604 ∅c0 3948 ∪ ciun 4552 ∩ ciin 4553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-in 3614 df-ss 3621 df-nul 3949 df-iun 4554 df-iin 4555 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |