![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iinun2 | Structured version Visualization version GIF version |
Description: Indexed intersection of union. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use intiin 4708 to recover Enderton's theorem. (Contributed by NM, 19-Aug-2004.) |
Ref | Expression |
---|---|
iinun2 | ⊢ ∩ 𝑥 ∈ 𝐴 (𝐵 ∪ 𝐶) = (𝐵 ∪ ∩ 𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.32v 3231 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∨ 𝑦 ∈ 𝐶) ↔ (𝑦 ∈ 𝐵 ∨ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) | |
2 | elun 3904 | . . . . 5 ⊢ (𝑦 ∈ (𝐵 ∪ 𝐶) ↔ (𝑦 ∈ 𝐵 ∨ 𝑦 ∈ 𝐶)) | |
3 | 2 | ralbii 3129 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∪ 𝐶) ↔ ∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∨ 𝑦 ∈ 𝐶)) |
4 | vex 3354 | . . . . . 6 ⊢ 𝑦 ∈ V | |
5 | eliin 4659 | . . . . . 6 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) | |
6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) |
7 | 6 | orbi2i 896 | . . . 4 ⊢ ((𝑦 ∈ 𝐵 ∨ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶) ↔ (𝑦 ∈ 𝐵 ∨ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) |
8 | 1, 3, 7 | 3bitr4i 292 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∪ 𝐶) ↔ (𝑦 ∈ 𝐵 ∨ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶)) |
9 | eliin 4659 | . . . 4 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 (𝐵 ∪ 𝐶) ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∪ 𝐶))) | |
10 | 4, 9 | ax-mp 5 | . . 3 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 (𝐵 ∪ 𝐶) ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∪ 𝐶)) |
11 | elun 3904 | . . 3 ⊢ (𝑦 ∈ (𝐵 ∪ ∩ 𝑥 ∈ 𝐴 𝐶) ↔ (𝑦 ∈ 𝐵 ∨ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶)) | |
12 | 8, 10, 11 | 3bitr4i 292 | . 2 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 (𝐵 ∪ 𝐶) ↔ 𝑦 ∈ (𝐵 ∪ ∩ 𝑥 ∈ 𝐴 𝐶)) |
13 | 12 | eqriv 2768 | 1 ⊢ ∩ 𝑥 ∈ 𝐴 (𝐵 ∪ 𝐶) = (𝐵 ∪ ∩ 𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∨ wo 834 = wceq 1631 ∈ wcel 2145 ∀wral 3061 Vcvv 3351 ∪ cun 3721 ∩ ciin 4655 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-v 3353 df-un 3728 df-iin 4657 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |