Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinssiun Structured version   Visualization version   GIF version

Theorem iinssiun 29709
Description: An indexed intersection is a subset of the corresponding indexed union. (Contributed by Thierry Arnoux, 31-Dec-2021.)
Assertion
Ref Expression
iinssiun (𝐴 ≠ ∅ → 𝑥𝐴 𝐵 𝑥𝐴 𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iinssiun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 r19.2z 4199 . . . 4 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝑦𝐵) → ∃𝑥𝐴 𝑦𝐵)
21ex 397 . . 3 (𝐴 ≠ ∅ → (∀𝑥𝐴 𝑦𝐵 → ∃𝑥𝐴 𝑦𝐵))
3 vex 3352 . . . 4 𝑦 ∈ V
4 eliin 4657 . . . 4 (𝑦 ∈ V → (𝑦 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑦𝐵))
53, 4ax-mp 5 . . 3 (𝑦 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑦𝐵)
6 eliun 4656 . . 3 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
72, 5, 63imtr4g 285 . 2 (𝐴 ≠ ∅ → (𝑦 𝑥𝐴 𝐵𝑦 𝑥𝐴 𝐵))
87ssrdv 3756 1 (𝐴 ≠ ∅ → 𝑥𝐴 𝐵 𝑥𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wcel 2144  wne 2942  wral 3060  wrex 3061  Vcvv 3349  wss 3721  c0 4061   ciun 4652   ciin 4653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-v 3351  df-dif 3724  df-in 3728  df-ss 3735  df-nul 4062  df-iun 4654  df-iin 4655
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator