![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iinpw | Structured version Visualization version GIF version |
Description: The power class of an intersection in terms of indexed intersection. Exercise 24(a) of [Enderton] p. 33. (Contributed by NM, 29-Nov-2003.) |
Ref | Expression |
---|---|
iinpw | ⊢ 𝒫 ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝒫 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssint 4627 | . . . 4 ⊢ (𝑦 ⊆ ∩ 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥) | |
2 | selpw 4304 | . . . . 5 ⊢ (𝑦 ∈ 𝒫 𝑥 ↔ 𝑦 ⊆ 𝑥) | |
3 | 2 | ralbii 3129 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝒫 𝑥 ↔ ∀𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥) |
4 | 1, 3 | bitr4i 267 | . . 3 ⊢ (𝑦 ⊆ ∩ 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝒫 𝑥) |
5 | selpw 4304 | . . 3 ⊢ (𝑦 ∈ 𝒫 ∩ 𝐴 ↔ 𝑦 ⊆ ∩ 𝐴) | |
6 | vex 3354 | . . . 4 ⊢ 𝑦 ∈ V | |
7 | eliin 4659 | . . . 4 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝒫 𝑥 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝒫 𝑥)) | |
8 | 6, 7 | ax-mp 5 | . . 3 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝒫 𝑥 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝒫 𝑥) |
9 | 4, 5, 8 | 3bitr4i 292 | . 2 ⊢ (𝑦 ∈ 𝒫 ∩ 𝐴 ↔ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝒫 𝑥) |
10 | 9 | eqriv 2768 | 1 ⊢ 𝒫 ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝒫 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1631 ∈ wcel 2145 ∀wral 3061 Vcvv 3351 ⊆ wss 3723 𝒫 cpw 4297 ∩ cint 4611 ∩ ciin 4655 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-v 3353 df-in 3730 df-ss 3737 df-pw 4299 df-int 4612 df-iin 4657 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |