MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iineq1 Structured version   Visualization version   GIF version

Theorem iineq1 4567
Description: Equality theorem for indexed intersection. (Contributed by NM, 27-Jun-1998.)
Assertion
Ref Expression
iineq1 (𝐴 = 𝐵 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem iineq1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 raleq 3168 . . 3 (𝐴 = 𝐵 → (∀𝑥𝐴 𝑦𝐶 ↔ ∀𝑥𝐵 𝑦𝐶))
21abbidv 2770 . 2 (𝐴 = 𝐵 → {𝑦 ∣ ∀𝑥𝐴 𝑦𝐶} = {𝑦 ∣ ∀𝑥𝐵 𝑦𝐶})
3 df-iin 4555 . 2 𝑥𝐴 𝐶 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐶}
4 df-iin 4555 . 2 𝑥𝐵 𝐶 = {𝑦 ∣ ∀𝑥𝐵 𝑦𝐶}
52, 3, 43eqtr4g 2710 1 (𝐴 = 𝐵 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1523  wcel 2030  {cab 2637  wral 2941   ciin 4553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-iin 4555
This theorem is referenced by:  iinrab2  4615  iinvdif  4624  riin0  4626  iin0  4869  xpriindi  5291  cmpfi  21259  ptbasfi  21432  fclsval  21859  taylfval  24158  polvalN  35509  iineq1d  39581
  Copyright terms: Public domain W3C validator