MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iindif2 Structured version   Visualization version   GIF version

Theorem iindif2 4721
Description: Indexed intersection of class difference. Generalization of half of theorem "De Morgan's laws" in [Enderton] p. 31. Use uniiun 4705 to recover Enderton's theorem. (Contributed by NM, 5-Oct-2006.)
Assertion
Ref Expression
iindif2 (𝐴 ≠ ∅ → 𝑥𝐴 (𝐵𝐶) = (𝐵 𝑥𝐴 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem iindif2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 r19.28zv 4205 . . . 4 (𝐴 ≠ ∅ → (∀𝑥𝐴 (𝑦𝐵 ∧ ¬ 𝑦𝐶) ↔ (𝑦𝐵 ∧ ∀𝑥𝐴 ¬ 𝑦𝐶)))
2 eldif 3731 . . . . . 6 (𝑦 ∈ (𝐵𝐶) ↔ (𝑦𝐵 ∧ ¬ 𝑦𝐶))
32bicomi 214 . . . . 5 ((𝑦𝐵 ∧ ¬ 𝑦𝐶) ↔ 𝑦 ∈ (𝐵𝐶))
43ralbii 3128 . . . 4 (∀𝑥𝐴 (𝑦𝐵 ∧ ¬ 𝑦𝐶) ↔ ∀𝑥𝐴 𝑦 ∈ (𝐵𝐶))
5 ralnex 3140 . . . . . 6 (∀𝑥𝐴 ¬ 𝑦𝐶 ↔ ¬ ∃𝑥𝐴 𝑦𝐶)
6 eliun 4656 . . . . . 6 (𝑦 𝑥𝐴 𝐶 ↔ ∃𝑥𝐴 𝑦𝐶)
75, 6xchbinxr 324 . . . . 5 (∀𝑥𝐴 ¬ 𝑦𝐶 ↔ ¬ 𝑦 𝑥𝐴 𝐶)
87anbi2i 601 . . . 4 ((𝑦𝐵 ∧ ∀𝑥𝐴 ¬ 𝑦𝐶) ↔ (𝑦𝐵 ∧ ¬ 𝑦 𝑥𝐴 𝐶))
91, 4, 83bitr3g 302 . . 3 (𝐴 ≠ ∅ → (∀𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ (𝑦𝐵 ∧ ¬ 𝑦 𝑥𝐴 𝐶)))
10 vex 3352 . . . 4 𝑦 ∈ V
11 eliin 4657 . . . 4 (𝑦 ∈ V → (𝑦 𝑥𝐴 (𝐵𝐶) ↔ ∀𝑥𝐴 𝑦 ∈ (𝐵𝐶)))
1210, 11ax-mp 5 . . 3 (𝑦 𝑥𝐴 (𝐵𝐶) ↔ ∀𝑥𝐴 𝑦 ∈ (𝐵𝐶))
13 eldif 3731 . . 3 (𝑦 ∈ (𝐵 𝑥𝐴 𝐶) ↔ (𝑦𝐵 ∧ ¬ 𝑦 𝑥𝐴 𝐶))
149, 12, 133bitr4g 303 . 2 (𝐴 ≠ ∅ → (𝑦 𝑥𝐴 (𝐵𝐶) ↔ 𝑦 ∈ (𝐵 𝑥𝐴 𝐶)))
1514eqrdv 2768 1 (𝐴 ≠ ∅ → 𝑥𝐴 (𝐵𝐶) = (𝐵 𝑥𝐴 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382   = wceq 1630  wcel 2144  wne 2942  wral 3060  wrex 3061  Vcvv 3349  cdif 3718  c0 4061   ciun 4652   ciin 4653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-v 3351  df-dif 3724  df-nul 4062  df-iun 4654  df-iin 4655
This theorem is referenced by:  iinvdif  4724  iincld  21063  clsval2  21074  mretopd  21116  hauscmplem  21429  cmpfi  21431  sigapildsyslem  30558  saliincl  41056
  Copyright terms: Public domain W3C validator