![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iin0 | Structured version Visualization version GIF version |
Description: An indexed intersection of the empty set, with a nonempty index set, is empty. (Contributed by NM, 20-Oct-2005.) |
Ref | Expression |
---|---|
iin0 | ⊢ (𝐴 ≠ ∅ ↔ ∩ 𝑥 ∈ 𝐴 ∅ = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iinconst 4562 | . 2 ⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 ∅ = ∅) | |
2 | 0ex 4823 | . . . . . 6 ⊢ ∅ ∈ V | |
3 | 2 | n0ii 3955 | . . . . 5 ⊢ ¬ V = ∅ |
4 | 0iin 4610 | . . . . . 6 ⊢ ∩ 𝑥 ∈ ∅ ∅ = V | |
5 | 4 | eqeq1i 2656 | . . . . 5 ⊢ (∩ 𝑥 ∈ ∅ ∅ = ∅ ↔ V = ∅) |
6 | 3, 5 | mtbir 312 | . . . 4 ⊢ ¬ ∩ 𝑥 ∈ ∅ ∅ = ∅ |
7 | iineq1 4567 | . . . . 5 ⊢ (𝐴 = ∅ → ∩ 𝑥 ∈ 𝐴 ∅ = ∩ 𝑥 ∈ ∅ ∅) | |
8 | 7 | eqeq1d 2653 | . . . 4 ⊢ (𝐴 = ∅ → (∩ 𝑥 ∈ 𝐴 ∅ = ∅ ↔ ∩ 𝑥 ∈ ∅ ∅ = ∅)) |
9 | 6, 8 | mtbiri 316 | . . 3 ⊢ (𝐴 = ∅ → ¬ ∩ 𝑥 ∈ 𝐴 ∅ = ∅) |
10 | 9 | necon2ai 2852 | . 2 ⊢ (∩ 𝑥 ∈ 𝐴 ∅ = ∅ → 𝐴 ≠ ∅) |
11 | 1, 10 | impbii 199 | 1 ⊢ (𝐴 ≠ ∅ ↔ ∩ 𝑥 ∈ 𝐴 ∅ = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1523 ≠ wne 2823 Vcvv 3231 ∅c0 3948 ∩ ciin 4553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-nul 4822 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-v 3233 df-dif 3610 df-nul 3949 df-iin 4555 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |