![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iihalf2cn | Structured version Visualization version GIF version |
Description: The second half function is a continuous map. (Contributed by Mario Carneiro, 6-Jun-2014.) |
Ref | Expression |
---|---|
iihalf2cn.1 | ⊢ 𝐽 = ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) |
Ref | Expression |
---|---|
iihalf2cn | ⊢ (𝑥 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑥) − 1)) ∈ (𝐽 Cn II) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2760 | . . 3 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
2 | iihalf2cn.1 | . . 3 ⊢ 𝐽 = ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) | |
3 | dfii2 22906 | . . 3 ⊢ II = ((topGen‘ran (,)) ↾t (0[,]1)) | |
4 | halfre 11458 | . . . . 5 ⊢ (1 / 2) ∈ ℝ | |
5 | 1re 10251 | . . . . 5 ⊢ 1 ∈ ℝ | |
6 | iccssre 12468 | . . . . 5 ⊢ (((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 2)[,]1) ⊆ ℝ) | |
7 | 4, 5, 6 | mp2an 710 | . . . 4 ⊢ ((1 / 2)[,]1) ⊆ ℝ |
8 | 7 | a1i 11 | . . 3 ⊢ (⊤ → ((1 / 2)[,]1) ⊆ ℝ) |
9 | unitssre 12532 | . . . 4 ⊢ (0[,]1) ⊆ ℝ | |
10 | 9 | a1i 11 | . . 3 ⊢ (⊤ → (0[,]1) ⊆ ℝ) |
11 | iihalf2 22953 | . . . 4 ⊢ (𝑥 ∈ ((1 / 2)[,]1) → ((2 · 𝑥) − 1) ∈ (0[,]1)) | |
12 | 11 | adantl 473 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ((1 / 2)[,]1)) → ((2 · 𝑥) − 1) ∈ (0[,]1)) |
13 | 1 | cnfldtopon 22807 | . . . . 5 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
14 | 13 | a1i 11 | . . . 4 ⊢ (⊤ → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) |
15 | 2cnd 11305 | . . . . . 6 ⊢ (⊤ → 2 ∈ ℂ) | |
16 | 14, 14, 15 | cnmptc 21687 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ 2) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
17 | 14 | cnmptid 21686 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ 𝑥) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
18 | 1 | mulcn 22891 | . . . . . 6 ⊢ · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) |
19 | 18 | a1i 11 | . . . . 5 ⊢ (⊤ → · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))) |
20 | 14, 16, 17, 19 | cnmpt12f 21691 | . . . 4 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ (2 · 𝑥)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
21 | 1cnd 10268 | . . . . 5 ⊢ (⊤ → 1 ∈ ℂ) | |
22 | 14, 14, 21 | cnmptc 21687 | . . . 4 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ 1) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
23 | 1 | subcn 22890 | . . . . 5 ⊢ − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) |
24 | 23 | a1i 11 | . . . 4 ⊢ (⊤ → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))) |
25 | 14, 20, 22, 24 | cnmpt12f 21691 | . . 3 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ ((2 · 𝑥) − 1)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
26 | 1, 2, 3, 8, 10, 12, 25 | cnmptre 22947 | . 2 ⊢ (⊤ → (𝑥 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑥) − 1)) ∈ (𝐽 Cn II)) |
27 | 26 | trud 1642 | 1 ⊢ (𝑥 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑥) − 1)) ∈ (𝐽 Cn II) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ⊤wtru 1633 ∈ wcel 2139 ⊆ wss 3715 ↦ cmpt 4881 ran crn 5267 ‘cfv 6049 (class class class)co 6814 ℂcc 10146 ℝcr 10147 0cc0 10148 1c1 10149 · cmul 10153 − cmin 10478 / cdiv 10896 2c2 11282 (,)cioo 12388 [,]cicc 12391 ↾t crest 16303 TopOpenctopn 16304 topGenctg 16320 ℂfldccnfld 19968 TopOnctopon 20937 Cn ccn 21250 ×t ctx 21585 IIcii 22899 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-inf2 8713 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-pre-sup 10226 ax-mulf 10228 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-iin 4675 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-of 7063 df-om 7232 df-1st 7334 df-2nd 7335 df-supp 7465 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-2o 7731 df-oadd 7734 df-er 7913 df-map 8027 df-ixp 8077 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-fsupp 8443 df-fi 8484 df-sup 8515 df-inf 8516 df-oi 8582 df-card 8975 df-cda 9202 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 df-nn 11233 df-2 11291 df-3 11292 df-4 11293 df-5 11294 df-6 11295 df-7 11296 df-8 11297 df-9 11298 df-n0 11505 df-z 11590 df-dec 11706 df-uz 11900 df-q 12002 df-rp 12046 df-xneg 12159 df-xadd 12160 df-xmul 12161 df-ioo 12392 df-icc 12395 df-fz 12540 df-fzo 12680 df-seq 13016 df-exp 13075 df-hash 13332 df-cj 14058 df-re 14059 df-im 14060 df-sqrt 14194 df-abs 14195 df-struct 16081 df-ndx 16082 df-slot 16083 df-base 16085 df-sets 16086 df-ress 16087 df-plusg 16176 df-mulr 16177 df-starv 16178 df-sca 16179 df-vsca 16180 df-ip 16181 df-tset 16182 df-ple 16183 df-ds 16186 df-unif 16187 df-hom 16188 df-cco 16189 df-rest 16305 df-topn 16306 df-0g 16324 df-gsum 16325 df-topgen 16326 df-pt 16327 df-prds 16330 df-xrs 16384 df-qtop 16389 df-imas 16390 df-xps 16392 df-mre 16468 df-mrc 16469 df-acs 16471 df-mgm 17463 df-sgrp 17505 df-mnd 17516 df-submnd 17557 df-mulg 17762 df-cntz 17970 df-cmn 18415 df-psmet 19960 df-xmet 19961 df-met 19962 df-bl 19963 df-mopn 19964 df-cnfld 19969 df-top 20921 df-topon 20938 df-topsp 20959 df-bases 20972 df-cn 21253 df-cnp 21254 df-tx 21587 df-hmeo 21780 df-xms 22346 df-ms 22347 df-tms 22348 df-ii 22901 |
This theorem is referenced by: htpycc 23000 pcocn 23037 pcohtpylem 23039 pcopt 23042 pcorevlem 23046 |
Copyright terms: Public domain | W3C validator |