Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  igenval Structured version   Visualization version   GIF version

Theorem igenval 34191
Description: The ideal generated by a subset of a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) (Proof shortened by Mario Carneiro, 20-Dec-2013.)
Hypotheses
Ref Expression
igenval.1 𝐺 = (1st𝑅)
igenval.2 𝑋 = ran 𝐺
Assertion
Ref Expression
igenval ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → (𝑅 IdlGen 𝑆) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
Distinct variable groups:   𝑅,𝑗   𝑆,𝑗   𝑗,𝑋
Allowed substitution hint:   𝐺(𝑗)

Proof of Theorem igenval
Dummy variables 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 igenval.1 . . . . . 6 𝐺 = (1st𝑅)
2 igenval.2 . . . . . 6 𝑋 = ran 𝐺
31, 2rngoidl 34154 . . . . 5 (𝑅 ∈ RingOps → 𝑋 ∈ (Idl‘𝑅))
4 sseq2 3768 . . . . . 6 (𝑗 = 𝑋 → (𝑆𝑗𝑆𝑋))
54rspcev 3449 . . . . 5 ((𝑋 ∈ (Idl‘𝑅) ∧ 𝑆𝑋) → ∃𝑗 ∈ (Idl‘𝑅)𝑆𝑗)
63, 5sylan 489 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → ∃𝑗 ∈ (Idl‘𝑅)𝑆𝑗)
7 rabn0 4101 . . . 4 ({𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ≠ ∅ ↔ ∃𝑗 ∈ (Idl‘𝑅)𝑆𝑗)
86, 7sylibr 224 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ≠ ∅)
9 intex 4969 . . 3 ({𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ≠ ∅ ↔ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ∈ V)
108, 9sylib 208 . 2 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ∈ V)
11 fvex 6363 . . . . . . 7 (1st𝑅) ∈ V
121, 11eqeltri 2835 . . . . . 6 𝐺 ∈ V
1312rnex 7266 . . . . 5 ran 𝐺 ∈ V
142, 13eqeltri 2835 . . . 4 𝑋 ∈ V
1514elpw2 4977 . . 3 (𝑆 ∈ 𝒫 𝑋𝑆𝑋)
16 simpl 474 . . . . . . 7 ((𝑟 = 𝑅𝑠 = 𝑆) → 𝑟 = 𝑅)
1716fveq2d 6357 . . . . . 6 ((𝑟 = 𝑅𝑠 = 𝑆) → (Idl‘𝑟) = (Idl‘𝑅))
18 sseq1 3767 . . . . . . 7 (𝑠 = 𝑆 → (𝑠𝑗𝑆𝑗))
1918adantl 473 . . . . . 6 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑠𝑗𝑆𝑗))
2017, 19rabeqbidv 3335 . . . . 5 ((𝑟 = 𝑅𝑠 = 𝑆) → {𝑗 ∈ (Idl‘𝑟) ∣ 𝑠𝑗} = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
2120inteqd 4632 . . . 4 ((𝑟 = 𝑅𝑠 = 𝑆) → {𝑗 ∈ (Idl‘𝑟) ∣ 𝑠𝑗} = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
22 fveq2 6353 . . . . . . . 8 (𝑟 = 𝑅 → (1st𝑟) = (1st𝑅))
2322, 1syl6eqr 2812 . . . . . . 7 (𝑟 = 𝑅 → (1st𝑟) = 𝐺)
2423rneqd 5508 . . . . . 6 (𝑟 = 𝑅 → ran (1st𝑟) = ran 𝐺)
2524, 2syl6eqr 2812 . . . . 5 (𝑟 = 𝑅 → ran (1st𝑟) = 𝑋)
2625pweqd 4307 . . . 4 (𝑟 = 𝑅 → 𝒫 ran (1st𝑟) = 𝒫 𝑋)
27 df-igen 34190 . . . 4 IdlGen = (𝑟 ∈ RingOps, 𝑠 ∈ 𝒫 ran (1st𝑟) ↦ {𝑗 ∈ (Idl‘𝑟) ∣ 𝑠𝑗})
2821, 26, 27ovmpt2x 6955 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ 𝒫 𝑋 {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ∈ V) → (𝑅 IdlGen 𝑆) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
2915, 28syl3an2br 1514 . 2 ((𝑅 ∈ RingOps ∧ 𝑆𝑋 {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ∈ V) → (𝑅 IdlGen 𝑆) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
3010, 29mpd3an3 1574 1 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → (𝑅 IdlGen 𝑆) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wne 2932  wrex 3051  {crab 3054  Vcvv 3340  wss 3715  c0 4058  𝒫 cpw 4302   cint 4627  ran crn 5267  cfv 6049  (class class class)co 6814  1st c1st 7332  RingOpscrngo 34024  Idlcidl 34137   IdlGen cigen 34189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-fo 6055  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-1st 7334  df-2nd 7335  df-grpo 27677  df-gid 27678  df-ablo 27729  df-rngo 34025  df-idl 34140  df-igen 34190
This theorem is referenced by:  igenss  34192  igenidl  34193  igenmin  34194  igenidl2  34195  igenval2  34196
  Copyright terms: Public domain W3C validator