![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > igenval | Structured version Visualization version GIF version |
Description: The ideal generated by a subset of a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) (Proof shortened by Mario Carneiro, 20-Dec-2013.) |
Ref | Expression |
---|---|
igenval.1 | ⊢ 𝐺 = (1st ‘𝑅) |
igenval.2 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
igenval | ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → (𝑅 IdlGen 𝑆) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | igenval.1 | . . . . . 6 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | igenval.2 | . . . . . 6 ⊢ 𝑋 = ran 𝐺 | |
3 | 1, 2 | rngoidl 34154 | . . . . 5 ⊢ (𝑅 ∈ RingOps → 𝑋 ∈ (Idl‘𝑅)) |
4 | sseq2 3768 | . . . . . 6 ⊢ (𝑗 = 𝑋 → (𝑆 ⊆ 𝑗 ↔ 𝑆 ⊆ 𝑋)) | |
5 | 4 | rspcev 3449 | . . . . 5 ⊢ ((𝑋 ∈ (Idl‘𝑅) ∧ 𝑆 ⊆ 𝑋) → ∃𝑗 ∈ (Idl‘𝑅)𝑆 ⊆ 𝑗) |
6 | 3, 5 | sylan 489 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → ∃𝑗 ∈ (Idl‘𝑅)𝑆 ⊆ 𝑗) |
7 | rabn0 4101 | . . . 4 ⊢ ({𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ≠ ∅ ↔ ∃𝑗 ∈ (Idl‘𝑅)𝑆 ⊆ 𝑗) | |
8 | 6, 7 | sylibr 224 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ≠ ∅) |
9 | intex 4969 | . . 3 ⊢ ({𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ≠ ∅ ↔ ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ∈ V) | |
10 | 8, 9 | sylib 208 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ∈ V) |
11 | fvex 6363 | . . . . . . 7 ⊢ (1st ‘𝑅) ∈ V | |
12 | 1, 11 | eqeltri 2835 | . . . . . 6 ⊢ 𝐺 ∈ V |
13 | 12 | rnex 7266 | . . . . 5 ⊢ ran 𝐺 ∈ V |
14 | 2, 13 | eqeltri 2835 | . . . 4 ⊢ 𝑋 ∈ V |
15 | 14 | elpw2 4977 | . . 3 ⊢ (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋) |
16 | simpl 474 | . . . . . . 7 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → 𝑟 = 𝑅) | |
17 | 16 | fveq2d 6357 | . . . . . 6 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (Idl‘𝑟) = (Idl‘𝑅)) |
18 | sseq1 3767 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (𝑠 ⊆ 𝑗 ↔ 𝑆 ⊆ 𝑗)) | |
19 | 18 | adantl 473 | . . . . . 6 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (𝑠 ⊆ 𝑗 ↔ 𝑆 ⊆ 𝑗)) |
20 | 17, 19 | rabeqbidv 3335 | . . . . 5 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → {𝑗 ∈ (Idl‘𝑟) ∣ 𝑠 ⊆ 𝑗} = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
21 | 20 | inteqd 4632 | . . . 4 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → ∩ {𝑗 ∈ (Idl‘𝑟) ∣ 𝑠 ⊆ 𝑗} = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
22 | fveq2 6353 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (1st ‘𝑟) = (1st ‘𝑅)) | |
23 | 22, 1 | syl6eqr 2812 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (1st ‘𝑟) = 𝐺) |
24 | 23 | rneqd 5508 | . . . . . 6 ⊢ (𝑟 = 𝑅 → ran (1st ‘𝑟) = ran 𝐺) |
25 | 24, 2 | syl6eqr 2812 | . . . . 5 ⊢ (𝑟 = 𝑅 → ran (1st ‘𝑟) = 𝑋) |
26 | 25 | pweqd 4307 | . . . 4 ⊢ (𝑟 = 𝑅 → 𝒫 ran (1st ‘𝑟) = 𝒫 𝑋) |
27 | df-igen 34190 | . . . 4 ⊢ IdlGen = (𝑟 ∈ RingOps, 𝑠 ∈ 𝒫 ran (1st ‘𝑟) ↦ ∩ {𝑗 ∈ (Idl‘𝑟) ∣ 𝑠 ⊆ 𝑗}) | |
28 | 21, 26, 27 | ovmpt2x 6955 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ 𝒫 𝑋 ∧ ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ∈ V) → (𝑅 IdlGen 𝑆) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
29 | 15, 28 | syl3an2br 1514 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋 ∧ ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ∈ V) → (𝑅 IdlGen 𝑆) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
30 | 10, 29 | mpd3an3 1574 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → (𝑅 IdlGen 𝑆) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ∃wrex 3051 {crab 3054 Vcvv 3340 ⊆ wss 3715 ∅c0 4058 𝒫 cpw 4302 ∩ cint 4627 ran crn 5267 ‘cfv 6049 (class class class)co 6814 1st c1st 7332 RingOpscrngo 34024 Idlcidl 34137 IdlGen cigen 34189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fo 6055 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-1st 7334 df-2nd 7335 df-grpo 27677 df-gid 27678 df-ablo 27729 df-rngo 34025 df-idl 34140 df-igen 34190 |
This theorem is referenced by: igenss 34192 igenidl 34193 igenmin 34194 igenidl2 34195 igenval2 34196 |
Copyright terms: Public domain | W3C validator |