Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ifscgr Structured version   Visualization version   GIF version

Theorem ifscgr 32482
Description: Inner five segment congruence. Take two triangles, 𝐴𝐷𝐶 and 𝐸𝐻𝐺, with 𝐵 between 𝐴 and 𝐶 and 𝐹 between 𝐸 and 𝐺. If the other components of the triangles are congruent, then so are 𝐵𝐷 and 𝐹𝐻. Theorem 4.2 of [Schwabhauser] p. 34. (Contributed by Scott Fenton, 27-Sep-2013.)
Assertion
Ref Expression
ifscgr (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩ InnerFiveSeg ⟨⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩⟩ → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))

Proof of Theorem ifscgr
Dummy variables 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brifs 32481 . 2 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩ InnerFiveSeg ⟨⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩⟩ ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))))
2 simp1l 1238 . . . . . 6 (((𝐵 Btwn ⟨𝐶, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐶, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) → 𝐵 Btwn ⟨𝐶, 𝐶⟩)
3 simp11 1244 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
4 simp13 1246 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
5 simp21 1247 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
6 axbtwnid 26039 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵 Btwn ⟨𝐶, 𝐶⟩ → 𝐵 = 𝐶))
73, 4, 5, 6syl3anc 1475 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐶, 𝐶⟩ → 𝐵 = 𝐶))
82, 7syl5 34 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (((𝐵 Btwn ⟨𝐶, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐶, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) → 𝐵 = 𝐶))
9 simp2r 1241 . . . . . . . . 9 (((𝐵 Btwn ⟨𝐶, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐶, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) → ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩)
10 simp3r 1243 . . . . . . . . 9 (((𝐵 Btwn ⟨𝐶, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐶, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) → ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)
119, 10jca 495 . . . . . . . 8 (((𝐵 Btwn ⟨𝐶, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐶, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) → (⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))
12 opeq2 4538 . . . . . . . . . . 11 (𝐵 = 𝐶 → ⟨𝐵, 𝐵⟩ = ⟨𝐵, 𝐶⟩)
1312breq1d 4794 . . . . . . . . . 10 (𝐵 = 𝐶 → (⟨𝐵, 𝐵⟩Cgr⟨𝐹, 𝐺⟩ ↔ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩))
14 opeq1 4537 . . . . . . . . . . 11 (𝐵 = 𝐶 → ⟨𝐵, 𝐷⟩ = ⟨𝐶, 𝐷⟩)
1514breq1d 4794 . . . . . . . . . 10 (𝐵 = 𝐶 → (⟨𝐵, 𝐷⟩Cgr⟨𝐺, 𝐻⟩ ↔ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))
1613, 15anbi12d 608 . . . . . . . . 9 (𝐵 = 𝐶 → ((⟨𝐵, 𝐵⟩Cgr⟨𝐹, 𝐺⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐺, 𝐻⟩) ↔ (⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)))
1716biimprd 238 . . . . . . . 8 (𝐵 = 𝐶 → ((⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩) → (⟨𝐵, 𝐵⟩Cgr⟨𝐹, 𝐺⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)))
1811, 17mpan9 490 . . . . . . 7 ((((𝐵 Btwn ⟨𝐶, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐶, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) ∧ 𝐵 = 𝐶) → (⟨𝐵, 𝐵⟩Cgr⟨𝐹, 𝐺⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))
19 simp31 1250 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → 𝐹 ∈ (𝔼‘𝑁))
20 simp32 1251 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → 𝐺 ∈ (𝔼‘𝑁))
21 cgrid2 32441 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁))) → (⟨𝐵, 𝐵⟩Cgr⟨𝐹, 𝐺⟩ → 𝐹 = 𝐺))
223, 4, 19, 20, 21syl13anc 1477 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (⟨𝐵, 𝐵⟩Cgr⟨𝐹, 𝐺⟩ → 𝐹 = 𝐺))
23 opeq1 4537 . . . . . . . . . . 11 (𝐹 = 𝐺 → ⟨𝐹, 𝐻⟩ = ⟨𝐺, 𝐻⟩)
2423breq2d 4796 . . . . . . . . . 10 (𝐹 = 𝐺 → (⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩ ↔ ⟨𝐵, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))
2524biimprd 238 . . . . . . . . 9 (𝐹 = 𝐺 → (⟨𝐵, 𝐷⟩Cgr⟨𝐺, 𝐻⟩ → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))
2622, 25syl6 35 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (⟨𝐵, 𝐵⟩Cgr⟨𝐹, 𝐺⟩ → (⟨𝐵, 𝐷⟩Cgr⟨𝐺, 𝐻⟩ → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩)))
2726impd 396 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → ((⟨𝐵, 𝐵⟩Cgr⟨𝐹, 𝐺⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐺, 𝐻⟩) → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))
2818, 27syl5 34 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → ((((𝐵 Btwn ⟨𝐶, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐶, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) ∧ 𝐵 = 𝐶) → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))
2928expd 400 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (((𝐵 Btwn ⟨𝐶, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐶, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) → (𝐵 = 𝐶 → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩)))
308, 29mpdd 43 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (((𝐵 Btwn ⟨𝐶, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐶, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))
31 opeq1 4537 . . . . . . . 8 (𝐴 = 𝐶 → ⟨𝐴, 𝐶⟩ = ⟨𝐶, 𝐶⟩)
3231breq2d 4796 . . . . . . 7 (𝐴 = 𝐶 → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ↔ 𝐵 Btwn ⟨𝐶, 𝐶⟩))
3332anbi1d 607 . . . . . 6 (𝐴 = 𝐶 → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ↔ (𝐵 Btwn ⟨𝐶, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩)))
3431breq1d 4794 . . . . . . 7 (𝐴 = 𝐶 → (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ↔ ⟨𝐶, 𝐶⟩Cgr⟨𝐸, 𝐺⟩))
3534anbi1d 607 . . . . . 6 (𝐴 = 𝐶 → ((⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ↔ (⟨𝐶, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩)))
3633, 353anbi12d 1547 . . . . 5 (𝐴 = 𝐶 → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) ↔ ((𝐵 Btwn ⟨𝐶, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐶, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))))
3736imbi1d 330 . . . 4 (𝐴 = 𝐶 → ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩) ↔ (((𝐵 Btwn ⟨𝐶, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐶, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩)))
3830, 37syl5ibr 236 . . 3 (𝐴 = 𝐶 → (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩)))
39 simp12 1245 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
40 btwndiff 32465 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → ∃𝑒 ∈ (𝔼‘𝑁)(𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒))
413, 39, 5, 40syl3anc 1475 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → ∃𝑒 ∈ (𝔼‘𝑁)(𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒))
42 simpl11 1313 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
43 simpl23 1323 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → 𝐸 ∈ (𝔼‘𝑁))
44 simpl32 1327 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → 𝐺 ∈ (𝔼‘𝑁))
45 simpl21 1319 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
46 simpr 471 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → 𝑒 ∈ (𝔼‘𝑁))
47 axsegcon 26027 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) → ∃𝑓 ∈ (𝔼‘𝑁)(𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩))
4842, 43, 44, 45, 46, 47syl122anc 1484 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → ∃𝑓 ∈ (𝔼‘𝑁)(𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩))
49 anass 459 . . . . . . . . . . . . 13 ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) ∧ 𝐴𝐶)) ↔ ((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ ((𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) ∧ 𝐴𝐶))))
50 anass 459 . . . . . . . . . . . . . 14 (((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ 𝐴𝐶) ↔ (((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) ∧ 𝐴𝐶)))
51 simplrl 754 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) → 𝐶 Btwn ⟨𝐴, 𝑒⟩)
5251adantl 467 . . . . . . . . . . . . . . . . . . . 20 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)))) → 𝐶 Btwn ⟨𝐴, 𝑒⟩)
53 simplll 750 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) → 𝐺 Btwn ⟨𝐸, 𝑓⟩)
5453adantl 467 . . . . . . . . . . . . . . . . . . . 20 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)))) → 𝐺 Btwn ⟨𝐸, 𝑓⟩)
5552, 54jca 495 . . . . . . . . . . . . . . . . . . 19 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)))) → (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐺 Btwn ⟨𝐸, 𝑓⟩))
56 simpr2l 1293 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) → ⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩)
5756adantl 467 . . . . . . . . . . . . . . . . . . . 20 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)))) → ⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩)
58 simpllr 752 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) → ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩)
5958adantl 467 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)))) → ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩)
603ad2antrr 697 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)))) → 𝑁 ∈ ℕ)
6120ad2antrr 697 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)))) → 𝐺 ∈ (𝔼‘𝑁))
62 simplrr 755 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)))) → 𝑓 ∈ (𝔼‘𝑁))
635ad2antrr 697 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)))) → 𝐶 ∈ (𝔼‘𝑁))
64 simplrl 754 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)))) → 𝑒 ∈ (𝔼‘𝑁))
65 cgrcom 32428 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) → (⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩ ↔ ⟨𝐶, 𝑒⟩Cgr⟨𝐺, 𝑓⟩))
6660, 61, 62, 63, 64, 65syl122anc 1484 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)))) → (⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩ ↔ ⟨𝐶, 𝑒⟩Cgr⟨𝐺, 𝑓⟩))
6759, 66mpbid 222 . . . . . . . . . . . . . . . . . . . 20 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)))) → ⟨𝐶, 𝑒⟩Cgr⟨𝐺, 𝑓⟩)
6857, 67jca 495 . . . . . . . . . . . . . . . . . . 19 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)))) → (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐶, 𝑒⟩Cgr⟨𝐺, 𝑓⟩))
69 simprr3 1275 . . . . . . . . . . . . . . . . . . 19 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)))) → (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))
7055, 68, 693jca 1121 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)))) → ((𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐺 Btwn ⟨𝐸, 𝑓⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐶, 𝑒⟩Cgr⟨𝐺, 𝑓⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)))
7170ex 397 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) → ((𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐺 Btwn ⟨𝐸, 𝑓⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐶, 𝑒⟩Cgr⟨𝐺, 𝑓⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))))
72 simpl11 1313 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
73 simpl12 1315 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
74 simpl21 1319 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
75 simprl 746 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝑒 ∈ (𝔼‘𝑁))
76 simpl22 1321 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁))
77 simpl23 1323 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝐸 ∈ (𝔼‘𝑁))
78 simpl32 1327 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝐺 ∈ (𝔼‘𝑁))
79 simprr 748 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝑓 ∈ (𝔼‘𝑁))
80 simpl33 1329 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝐻 ∈ (𝔼‘𝑁))
81 brofs 32443 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (⟨⟨𝐴, 𝐶⟩, ⟨𝑒, 𝐷⟩⟩ OuterFiveSeg ⟨⟨𝐸, 𝐺⟩, ⟨𝑓, 𝐻⟩⟩ ↔ ((𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐺 Btwn ⟨𝐸, 𝑓⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐶, 𝑒⟩Cgr⟨𝐺, 𝑓⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))))
8272, 73, 74, 75, 76, 77, 78, 79, 80, 81syl333anc 1507 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (⟨⟨𝐴, 𝐶⟩, ⟨𝑒, 𝐷⟩⟩ OuterFiveSeg ⟨⟨𝐸, 𝐺⟩, ⟨𝑓, 𝐻⟩⟩ ↔ ((𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐺 Btwn ⟨𝐸, 𝑓⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐶, 𝑒⟩Cgr⟨𝐺, 𝑓⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))))
8371, 82sylibrd 249 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) → ⟨⟨𝐴, 𝐶⟩, ⟨𝑒, 𝐷⟩⟩ OuterFiveSeg ⟨⟨𝐸, 𝐺⟩, ⟨𝑓, 𝐻⟩⟩))
84 5segofs 32444 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → ((⟨⟨𝐴, 𝐶⟩, ⟨𝑒, 𝐷⟩⟩ OuterFiveSeg ⟨⟨𝐸, 𝐺⟩, ⟨𝑓, 𝐻⟩⟩ ∧ 𝐴𝐶) → ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩))
8572, 73, 74, 75, 76, 77, 78, 79, 80, 84syl333anc 1507 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → ((⟨⟨𝐴, 𝐶⟩, ⟨𝑒, 𝐷⟩⟩ OuterFiveSeg ⟨⟨𝐸, 𝐺⟩, ⟨𝑓, 𝐻⟩⟩ ∧ 𝐴𝐶) → ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩))
8683, 85syland 582 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ 𝐴𝐶) → ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩))
87 simpr1l 1289 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)
8887adantr 466 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)
8951adantr 466 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩) → 𝐶 Btwn ⟨𝐴, 𝑒⟩)
9088, 89jca 495 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝑒⟩))
91 simpr1r 1291 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) → 𝐹 Btwn ⟨𝐸, 𝐺⟩)
9291adantr 466 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩) → 𝐹 Btwn ⟨𝐸, 𝐺⟩)
9353adantr 466 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩) → 𝐺 Btwn ⟨𝐸, 𝑓⟩)
9490, 92, 93jca32 499 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩) → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝑒⟩) ∧ (𝐹 Btwn ⟨𝐸, 𝐺⟩ ∧ 𝐺 Btwn ⟨𝐸, 𝑓⟩)))
95 simpl13 1317 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
96 btwnexch3 32458 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝑒⟩) → 𝐶 Btwn ⟨𝐵, 𝑒⟩))
9772, 73, 95, 74, 75, 96syl122anc 1484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝑒⟩) → 𝐶 Btwn ⟨𝐵, 𝑒⟩))
98 simpl31 1325 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝐹 ∈ (𝔼‘𝑁))
99 btwnexch3 32458 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ ℕ ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → ((𝐹 Btwn ⟨𝐸, 𝐺⟩ ∧ 𝐺 Btwn ⟨𝐸, 𝑓⟩) → 𝐺 Btwn ⟨𝐹, 𝑓⟩))
10072, 77, 98, 78, 79, 99syl122anc 1484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → ((𝐹 Btwn ⟨𝐸, 𝐺⟩ ∧ 𝐺 Btwn ⟨𝐸, 𝑓⟩) → 𝐺 Btwn ⟨𝐹, 𝑓⟩))
10197, 100anim12d 588 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝑒⟩) ∧ (𝐹 Btwn ⟨𝐸, 𝐺⟩ ∧ 𝐺 Btwn ⟨𝐸, 𝑓⟩)) → (𝐶 Btwn ⟨𝐵, 𝑒⟩ ∧ 𝐺 Btwn ⟨𝐹, 𝑓⟩)))
10294, 101syl5 34 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩) → (𝐶 Btwn ⟨𝐵, 𝑒⟩ ∧ 𝐺 Btwn ⟨𝐹, 𝑓⟩)))
103102imp 393 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩)) → (𝐶 Btwn ⟨𝐵, 𝑒⟩ ∧ 𝐺 Btwn ⟨𝐹, 𝑓⟩))
104 btwncom 32452 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) → (𝐶 Btwn ⟨𝐵, 𝑒⟩ ↔ 𝐶 Btwn ⟨𝑒, 𝐵⟩))
10572, 74, 95, 75, 104syl13anc 1477 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (𝐶 Btwn ⟨𝐵, 𝑒⟩ ↔ 𝐶 Btwn ⟨𝑒, 𝐵⟩))
106 btwncom 32452 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ ℕ ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (𝐺 Btwn ⟨𝐹, 𝑓⟩ ↔ 𝐺 Btwn ⟨𝑓, 𝐹⟩))
10772, 78, 98, 79, 106syl13anc 1477 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (𝐺 Btwn ⟨𝐹, 𝑓⟩ ↔ 𝐺 Btwn ⟨𝑓, 𝐹⟩))
108105, 107anbi12d 608 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → ((𝐶 Btwn ⟨𝐵, 𝑒⟩ ∧ 𝐺 Btwn ⟨𝐹, 𝑓⟩) ↔ (𝐶 Btwn ⟨𝑒, 𝐵⟩ ∧ 𝐺 Btwn ⟨𝑓, 𝐹⟩)))
109108adantr 466 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩)) → ((𝐶 Btwn ⟨𝐵, 𝑒⟩ ∧ 𝐺 Btwn ⟨𝐹, 𝑓⟩) ↔ (𝐶 Btwn ⟨𝑒, 𝐵⟩ ∧ 𝐺 Btwn ⟨𝑓, 𝐹⟩)))
110103, 109mpbid 222 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩)) → (𝐶 Btwn ⟨𝑒, 𝐵⟩ ∧ 𝐺 Btwn ⟨𝑓, 𝐹⟩))
11158ad2antrl 699 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩)) → ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩)
11272, 78, 79, 74, 75, 65syl122anc 1484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩ ↔ ⟨𝐶, 𝑒⟩Cgr⟨𝐺, 𝑓⟩))
113 cgrcomlr 32436 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (⟨𝐶, 𝑒⟩Cgr⟨𝐺, 𝑓⟩ ↔ ⟨𝑒, 𝐶⟩Cgr⟨𝑓, 𝐺⟩))
11472, 74, 75, 78, 79, 113syl122anc 1484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (⟨𝐶, 𝑒⟩Cgr⟨𝐺, 𝑓⟩ ↔ ⟨𝑒, 𝐶⟩Cgr⟨𝑓, 𝐺⟩))
115112, 114bitrd 268 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩ ↔ ⟨𝑒, 𝐶⟩Cgr⟨𝑓, 𝐺⟩))
116115adantr 466 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩)) → (⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩ ↔ ⟨𝑒, 𝐶⟩Cgr⟨𝑓, 𝐺⟩))
117111, 116mpbid 222 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩)) → ⟨𝑒, 𝐶⟩Cgr⟨𝑓, 𝐺⟩)
118 simpr2r 1295 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) → ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩)
119118ad2antrl 699 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩)) → ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩)
12072, 95, 74, 98, 78, 119cgrcomlrand 32439 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩)) → ⟨𝐶, 𝐵⟩Cgr⟨𝐺, 𝐹⟩)
121117, 120jca 495 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩)) → (⟨𝑒, 𝐶⟩Cgr⟨𝑓, 𝐺⟩ ∧ ⟨𝐶, 𝐵⟩Cgr⟨𝐺, 𝐹⟩))
122 simprr 748 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩)) → ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩)
123 simpr3r 1299 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) → ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)
124123ad2antrl 699 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩)) → ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)
125122, 124jca 495 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩)) → (⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))
126110, 121, 1253jca 1121 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩)) → ((𝐶 Btwn ⟨𝑒, 𝐵⟩ ∧ 𝐺 Btwn ⟨𝑓, 𝐹⟩) ∧ (⟨𝑒, 𝐶⟩Cgr⟨𝑓, 𝐺⟩ ∧ ⟨𝐶, 𝐵⟩Cgr⟨𝐺, 𝐹⟩) ∧ (⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)))
127126ex 397 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩) → ((𝐶 Btwn ⟨𝑒, 𝐵⟩ ∧ 𝐺 Btwn ⟨𝑓, 𝐹⟩) ∧ (⟨𝑒, 𝐶⟩Cgr⟨𝑓, 𝐺⟩ ∧ ⟨𝐶, 𝐵⟩Cgr⟨𝐺, 𝐹⟩) ∧ (⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))))
128 brofs 32443 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (⟨⟨𝑒, 𝐶⟩, ⟨𝐵, 𝐷⟩⟩ OuterFiveSeg ⟨⟨𝑓, 𝐺⟩, ⟨𝐹, 𝐻⟩⟩ ↔ ((𝐶 Btwn ⟨𝑒, 𝐵⟩ ∧ 𝐺 Btwn ⟨𝑓, 𝐹⟩) ∧ (⟨𝑒, 𝐶⟩Cgr⟨𝑓, 𝐺⟩ ∧ ⟨𝐶, 𝐵⟩Cgr⟨𝐺, 𝐹⟩) ∧ (⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))))
12972, 75, 74, 95, 76, 79, 78, 98, 80, 128syl333anc 1507 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (⟨⟨𝑒, 𝐶⟩, ⟨𝐵, 𝐷⟩⟩ OuterFiveSeg ⟨⟨𝑓, 𝐺⟩, ⟨𝐹, 𝐻⟩⟩ ↔ ((𝐶 Btwn ⟨𝑒, 𝐵⟩ ∧ 𝐺 Btwn ⟨𝑓, 𝐹⟩) ∧ (⟨𝑒, 𝐶⟩Cgr⟨𝑓, 𝐺⟩ ∧ ⟨𝐶, 𝐵⟩Cgr⟨𝐺, 𝐹⟩) ∧ (⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))))
130127, 129sylibrd 249 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩) → ⟨⟨𝑒, 𝐶⟩, ⟨𝐵, 𝐷⟩⟩ OuterFiveSeg ⟨⟨𝑓, 𝐺⟩, ⟨𝐹, 𝐻⟩⟩))
131 simplrr 755 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) → 𝐶𝑒)
132131adantr 466 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩) → 𝐶𝑒)
133132necomd 2997 . . . . . . . . . . . . . . . . . . . 20 (((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩) → 𝑒𝐶)
134133a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩) → 𝑒𝐶))
135130, 134jcad 496 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩) → (⟨⟨𝑒, 𝐶⟩, ⟨𝐵, 𝐷⟩⟩ OuterFiveSeg ⟨⟨𝑓, 𝐺⟩, ⟨𝐹, 𝐻⟩⟩ ∧ 𝑒𝐶)))
136 5segofs 32444 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → ((⟨⟨𝑒, 𝐶⟩, ⟨𝐵, 𝐷⟩⟩ OuterFiveSeg ⟨⟨𝑓, 𝐺⟩, ⟨𝐹, 𝐻⟩⟩ ∧ 𝑒𝐶) → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))
13772, 75, 74, 95, 76, 79, 78, 98, 80, 136syl333anc 1507 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → ((⟨⟨𝑒, 𝐶⟩, ⟨𝐵, 𝐷⟩⟩ OuterFiveSeg ⟨⟨𝑓, 𝐺⟩, ⟨𝐹, 𝐻⟩⟩ ∧ 𝑒𝐶) → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))
138135, 137syld 47 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩) → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))
139138expd 400 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) → (⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩ → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩)))
140139adantrd 475 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ 𝐴𝐶) → (⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩ → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩)))
14186, 140mpdd 43 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ 𝐴𝐶) → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))
14250, 141syl5bir 233 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) ∧ 𝐴𝐶)) → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))
14349, 142syl5bir 233 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ ((𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) ∧ 𝐴𝐶))) → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))
144143expd 400 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → ((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) → (((𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) ∧ 𝐴𝐶)) → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩)))
145144anassrs 458 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ 𝑓 ∈ (𝔼‘𝑁)) → ((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) → (((𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) ∧ 𝐴𝐶)) → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩)))
146145rexlimdva 3178 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → (∃𝑓 ∈ (𝔼‘𝑁)(𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) → (((𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) ∧ 𝐴𝐶)) → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩)))
14748, 146mpd 15 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → (((𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) ∧ 𝐴𝐶)) → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))
148147expd 400 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → ((𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒) → ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) ∧ 𝐴𝐶) → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩)))
149148rexlimdva 3178 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (∃𝑒 ∈ (𝔼‘𝑁)(𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒) → ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) ∧ 𝐴𝐶) → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩)))
15041, 149mpd 15 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) ∧ 𝐴𝐶) → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))
151150expd 400 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) → (𝐴𝐶 → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩)))
152151com3r 87 . . 3 (𝐴𝐶 → (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩)))
15338, 152pm2.61ine 3025 . 2 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))
1541, 153sylbid 230 1 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩ InnerFiveSeg ⟨⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩⟩ → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1070   = wceq 1630  wcel 2144  wne 2942  wrex 3061  cop 4320   class class class wbr 4784  cfv 6031  cn 11221  𝔼cee 25988   Btwn cbtwn 25989  Cgrccgr 25990   OuterFiveSeg cofs 32420   InnerFiveSeg cifs 32473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-map 8010  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-sup 8503  df-oi 8570  df-card 8964  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-n0 11494  df-z 11579  df-uz 11888  df-rp 12035  df-ico 12385  df-icc 12386  df-fz 12533  df-fzo 12673  df-seq 13008  df-exp 13067  df-hash 13321  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-clim 14426  df-sum 14624  df-ee 25991  df-btwn 25992  df-cgr 25993  df-ofs 32421  df-ifs 32478
This theorem is referenced by:  cgrsub  32483  btwnxfr  32494  fscgr  32518  btwnconn1lem5  32529  btwnconn1lem6  32530
  Copyright terms: Public domain W3C validator