![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifnot | Structured version Visualization version GIF version |
Description: Negating the first argument swaps the last two arguments of a conditional operator. (Contributed by NM, 21-Jun-2007.) |
Ref | Expression |
---|---|
ifnot | ⊢ if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 136 | . . . 4 ⊢ (𝜑 → ¬ ¬ 𝜑) | |
2 | 1 | iffalsed 4130 | . . 3 ⊢ (𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = 𝐵) |
3 | iftrue 4125 | . . 3 ⊢ (𝜑 → if(𝜑, 𝐵, 𝐴) = 𝐵) | |
4 | 2, 3 | eqtr4d 2688 | . 2 ⊢ (𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴)) |
5 | iftrue 4125 | . . 3 ⊢ (¬ 𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = 𝐴) | |
6 | iffalse 4128 | . . 3 ⊢ (¬ 𝜑 → if(𝜑, 𝐵, 𝐴) = 𝐴) | |
7 | 5, 6 | eqtr4d 2688 | . 2 ⊢ (¬ 𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴)) |
8 | 4, 7 | pm2.61i 176 | 1 ⊢ if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1523 ifcif 4119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-if 4120 |
This theorem is referenced by: suppsnop 7354 2resupmax 12057 sadadd2lem2 15219 maducoeval2 20494 tmsxpsval2 22391 itg2uba 23555 lgsneg 25091 lgsdilem 25094 sgnneg 30730 bj-xpimasn 33067 itgaddnclem2 33599 ftc1anclem5 33619 |
Copyright terms: Public domain | W3C validator |