![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifnefalse | Structured version Visualization version GIF version |
Description: When values are unequal, but an "if" condition checks if they are equal, then the "false" branch results. This is a simple utility to provide a slight shortening and simplification of proofs vs. applying iffalse 4235 directly in this case. It happens, e.g., in oevn0 7753. (Contributed by David A. Wheeler, 15-May-2015.) |
Ref | Expression |
---|---|
ifnefalse | ⊢ (𝐴 ≠ 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2944 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | iffalse 4235 | . 2 ⊢ (¬ 𝐴 = 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) | |
3 | 1, 2 | sylbi 207 | 1 ⊢ (𝐴 ≠ 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1631 ≠ wne 2943 ifcif 4226 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-ne 2944 df-if 4227 |
This theorem is referenced by: xpima2 5718 axcc2lem 9464 xnegmnf 12246 rexneg 12247 xaddpnf1 12262 xaddpnf2 12263 xaddmnf1 12264 xaddmnf2 12265 mnfaddpnf 12267 rexadd 12268 fztpval 12609 sadcp1 15385 smupp1 15410 pcval 15756 ramtcl 15921 ramub1lem1 15937 xpscfv 16430 xpsfrnel 16431 gexlem2 18204 frgpuptinv 18391 frgpup3lem 18397 gsummpt1n0 18571 dprdfid 18624 dpjrid 18669 abvtrivd 19050 mplsubrg 19655 znf1o 20115 znhash 20122 znunithash 20128 mamulid 20464 mamurid 20465 dmatid 20519 dmatmulcl 20524 scmatdmat 20539 mdetdiagid 20624 chpdmatlem2 20864 chpscmat 20867 chpidmat 20872 xkoccn 21643 iccpnfhmeo 22964 xrhmeo 22965 ioorinv2 23563 mbfi1fseqlem4 23705 ellimc2 23861 dvcobr 23929 ply1remlem 24142 dvtaylp 24344 0cxp 24633 lgsval3 25261 lgsdinn0 25291 dchrisumlem1 25399 dchrvmasumiflem1 25411 rpvmasum2 25422 dchrvmasumlem 25433 padicabv 25540 indispconn 31554 fnejoin1 32700 ptrecube 33742 poimirlem16 33758 poimirlem17 33759 poimirlem19 33761 poimirlem20 33762 fdc 33873 cdlemk40f 36729 sdrgacs 38297 blenn0 42892 |
Copyright terms: Public domain | W3C validator |