![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifle | Structured version Visualization version GIF version |
Description: An if statement transforms an implication into an inequality of terms. (Contributed by Mario Carneiro, 31-Aug-2014.) |
Ref | Expression |
---|---|
ifle | ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) ∧ (𝜑 → 𝜓)) → if(𝜑, 𝐴, 𝐵) ≤ if(𝜓, 𝐴, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll1 1255 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) ∧ (𝜑 → 𝜓)) ∧ 𝜑) → 𝐴 ∈ ℝ) | |
2 | 1 | leidd 10806 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) ∧ (𝜑 → 𝜓)) ∧ 𝜑) → 𝐴 ≤ 𝐴) |
3 | iftrue 4236 | . . . 4 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
4 | 3 | adantl 473 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) ∧ (𝜑 → 𝜓)) ∧ 𝜑) → if(𝜑, 𝐴, 𝐵) = 𝐴) |
5 | id 22 | . . . . . 6 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
6 | 5 | imp 444 | . . . . 5 ⊢ (((𝜑 → 𝜓) ∧ 𝜑) → 𝜓) |
7 | 6 | adantll 752 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) ∧ (𝜑 → 𝜓)) ∧ 𝜑) → 𝜓) |
8 | 7 | iftrued 4238 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) ∧ (𝜑 → 𝜓)) ∧ 𝜑) → if(𝜓, 𝐴, 𝐵) = 𝐴) |
9 | 2, 4, 8 | 3brtr4d 4836 | . 2 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) ∧ (𝜑 → 𝜓)) ∧ 𝜑) → if(𝜑, 𝐴, 𝐵) ≤ if(𝜓, 𝐴, 𝐵)) |
10 | iffalse 4239 | . . . 4 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
11 | 10 | adantl 473 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) ∧ (𝜑 → 𝜓)) ∧ ¬ 𝜑) → if(𝜑, 𝐴, 𝐵) = 𝐵) |
12 | simpll3 1259 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) ∧ (𝜑 → 𝜓)) ∧ ¬ 𝜑) → 𝐵 ≤ 𝐴) | |
13 | simpll2 1257 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) ∧ (𝜑 → 𝜓)) ∧ ¬ 𝜑) → 𝐵 ∈ ℝ) | |
14 | 13 | leidd 10806 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) ∧ (𝜑 → 𝜓)) ∧ ¬ 𝜑) → 𝐵 ≤ 𝐵) |
15 | breq2 4808 | . . . . 5 ⊢ (𝐴 = if(𝜓, 𝐴, 𝐵) → (𝐵 ≤ 𝐴 ↔ 𝐵 ≤ if(𝜓, 𝐴, 𝐵))) | |
16 | breq2 4808 | . . . . 5 ⊢ (𝐵 = if(𝜓, 𝐴, 𝐵) → (𝐵 ≤ 𝐵 ↔ 𝐵 ≤ if(𝜓, 𝐴, 𝐵))) | |
17 | 15, 16 | ifboth 4268 | . . . 4 ⊢ ((𝐵 ≤ 𝐴 ∧ 𝐵 ≤ 𝐵) → 𝐵 ≤ if(𝜓, 𝐴, 𝐵)) |
18 | 12, 14, 17 | syl2anc 696 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) ∧ (𝜑 → 𝜓)) ∧ ¬ 𝜑) → 𝐵 ≤ if(𝜓, 𝐴, 𝐵)) |
19 | 11, 18 | eqbrtrd 4826 | . 2 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) ∧ (𝜑 → 𝜓)) ∧ ¬ 𝜑) → if(𝜑, 𝐴, 𝐵) ≤ if(𝜓, 𝐴, 𝐵)) |
20 | 9, 19 | pm2.61dan 867 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) ∧ (𝜑 → 𝜓)) → if(𝜑, 𝐴, 𝐵) ≤ if(𝜓, 𝐴, 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ifcif 4230 class class class wbr 4804 ℝcr 10147 ≤ cle 10287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-resscn 10205 ax-pre-lttri 10222 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 |
This theorem is referenced by: rpnnen2lem4 15165 itg2cnlem2 23748 |
Copyright terms: Public domain | W3C validator |