![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifid | Structured version Visualization version GIF version |
Description: Identical true and false arguments in the conditional operator. (Contributed by NM, 18-Apr-2005.) |
Ref | Expression |
---|---|
ifid | ⊢ if(𝜑, 𝐴, 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 4125 | . 2 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴) | |
2 | iffalse 4128 | . 2 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴) | |
3 | 1, 2 | pm2.61i 176 | 1 ⊢ if(𝜑, 𝐴, 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 ifcif 4119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-if 4120 |
This theorem is referenced by: csbif 4171 rabsnif 4290 somincom 5565 fsuppmptif 8346 supsn 8419 infsn 8451 wemaplem2 8493 cantnflem1 8624 xrmaxeq 12048 xrmineq 12049 xaddpnf1 12095 xaddmnf1 12097 rexmul 12139 max0add 14094 sumz 14497 prod1 14718 1arithlem4 15677 xpscf 16273 mgm2nsgrplem2 17453 mgm2nsgrplem3 17454 dmdprdsplitlem 18482 fczpsrbag 19415 mplcoe1 19513 mplcoe3 19514 mplcoe5 19516 evlslem2 19560 mdet0 20460 mdetralt2 20463 mdetunilem9 20474 madurid 20498 decpmatid 20623 cnmpt2pc 22774 pcoval2 22862 pcorevlem 22872 itgz 23592 itgvallem3 23597 iblposlem 23603 iblss2 23617 itgss 23623 ditg0 23662 cnplimc 23696 limcco 23702 dvexp3 23786 ply1nzb 23927 plyeq0lem 24011 dgrcolem2 24075 plydivlem4 24096 radcnv0 24215 efrlim 24741 mumullem2 24951 lgsval2lem 25077 lgsdilem2 25103 dgrsub2 38022 relexp1idm 38323 relexp0idm 38324 |
Copyright terms: Public domain | W3C validator |