![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifexg | Structured version Visualization version GIF version |
Description: Conditional operator existence. (Contributed by NM, 21-Mar-2011.) |
Ref | Expression |
---|---|
ifexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → if(𝜑, 𝐴, 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifeq1 4123 | . . 3 ⊢ (𝑥 = 𝐴 → if(𝜑, 𝑥, 𝑦) = if(𝜑, 𝐴, 𝑦)) | |
2 | 1 | eleq1d 2715 | . 2 ⊢ (𝑥 = 𝐴 → (if(𝜑, 𝑥, 𝑦) ∈ V ↔ if(𝜑, 𝐴, 𝑦) ∈ V)) |
3 | ifeq2 4124 | . . 3 ⊢ (𝑦 = 𝐵 → if(𝜑, 𝐴, 𝑦) = if(𝜑, 𝐴, 𝐵)) | |
4 | 3 | eleq1d 2715 | . 2 ⊢ (𝑦 = 𝐵 → (if(𝜑, 𝐴, 𝑦) ∈ V ↔ if(𝜑, 𝐴, 𝐵) ∈ V)) |
5 | vex 3234 | . . 3 ⊢ 𝑥 ∈ V | |
6 | vex 3234 | . . 3 ⊢ 𝑦 ∈ V | |
7 | 5, 6 | ifex 4189 | . 2 ⊢ if(𝜑, 𝑥, 𝑦) ∈ V |
8 | 2, 4, 7 | vtocl2g 3301 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → if(𝜑, 𝐴, 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ifcif 4119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rab 2950 df-v 3233 df-un 3612 df-if 4120 |
This theorem is referenced by: fsuppmptif 8346 cantnfp1lem1 8613 cantnfp1lem3 8615 symgextfv 17884 pmtrfv 17918 evlslem3 19562 marrepeval 20417 gsummatr01lem3 20511 stdbdmetval 22366 stdbdxmet 22367 ellimc2 23686 psgnfzto1stlem 29978 cdleme31fv 35995 sge0val 40901 hsphoival 41114 hspmbllem2 41162 |
Copyright terms: Public domain | W3C validator |