Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifeqda Structured version   Visualization version   GIF version

Theorem ifeqda 4266
 Description: Separation of the values of the conditional operator. (Contributed by Alexander van der Vekens, 13-Apr-2018.)
Hypotheses
Ref Expression
ifeqda.1 ((𝜑𝜓) → 𝐴 = 𝐶)
ifeqda.2 ((𝜑 ∧ ¬ 𝜓) → 𝐵 = 𝐶)
Assertion
Ref Expression
ifeqda (𝜑 → if(𝜓, 𝐴, 𝐵) = 𝐶)

Proof of Theorem ifeqda
StepHypRef Expression
1 iftrue 4237 . . . 4 (𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐴)
21adantl 473 . . 3 ((𝜑𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐴)
3 ifeqda.1 . . 3 ((𝜑𝜓) → 𝐴 = 𝐶)
42, 3eqtrd 2795 . 2 ((𝜑𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐶)
5 iffalse 4240 . . . 4 𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐵)
65adantl 473 . . 3 ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐵)
7 ifeqda.2 . . 3 ((𝜑 ∧ ¬ 𝜓) → 𝐵 = 𝐶)
86, 7eqtrd 2795 . 2 ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐶)
94, 8pm2.61dan 867 1 (𝜑 → if(𝜓, 𝐴, 𝐵) = 𝐶)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1632  ifcif 4231 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-clab 2748  df-cleq 2754  df-clel 2757  df-if 4232 This theorem is referenced by:  somincom  5689  cantnfp1  8754  ccatsymb  13575  swrdccat3blem  13716  repswccat  13753  ccatco  13802  bitsinvp1  15394  xrsdsreval  20014  fvmptnn04if  20877  chfacfscmulgsum  20888  chfacfpmmulgsum  20892  oprpiece1res2  22973  phtpycc  23012  atantayl2  24886  ifeq3da  29694  fprodex01  29902  psgnfzto1stlem  30181  fzto1st1  30183  mdetlap1  30223  madjusmdetlem1  30224  madjusmdetlem2  30225  ccatmulgnn0dir  30950  plymulx  30956  itgexpif  31015  repr0  31020  elmrsubrn  31746  matunitlindflem1  33737  fourierdlem101  40946  hoidmv1lelem2  41331  linc0scn0  42741  m1modmmod  42845  digexp  42930
 Copyright terms: Public domain W3C validator