![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifeq2da | Structured version Visualization version GIF version |
Description: Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
ifeq2da.1 | ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
ifeq2da | ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 4236 | . . . 4 ⊢ (𝜓 → if(𝜓, 𝐶, 𝐴) = 𝐶) | |
2 | iftrue 4236 | . . . 4 ⊢ (𝜓 → if(𝜓, 𝐶, 𝐵) = 𝐶) | |
3 | 1, 2 | eqtr4d 2797 | . . 3 ⊢ (𝜓 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
4 | 3 | adantl 473 | . 2 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
5 | ifeq2da.1 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐴 = 𝐵) | |
6 | 5 | ifeq2d 4249 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
7 | 4, 6 | pm2.61dan 867 | 1 ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1632 ifcif 4230 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-rab 3059 df-v 3342 df-un 3720 df-if 4231 |
This theorem is referenced by: ifeq12da 4262 dfac12lem1 9157 ttukeylem3 9525 xmulcom 12289 xmulneg1 12292 subgmulg 17809 1marepvmarrepid 20583 copco 23018 pcopt2 23023 limcdif 23839 limcmpt 23846 limcres 23849 limccnp 23854 radcnv0 24369 leibpi 24868 efrlim 24895 dchrvmasumiflem2 25390 rpvmasum2 25400 padicabvf 25519 padicabvcxp 25520 itg2addnclem 33774 fourierdlem73 40899 fourierdlem76 40902 fourierdlem89 40915 fourierdlem91 40917 |
Copyright terms: Public domain | W3C validator |