![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifeq2d | Structured version Visualization version GIF version |
Description: Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.) |
Ref | Expression |
---|---|
ifeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
ifeq2d | ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | ifeq2 4124 | . 2 ⊢ (𝐴 = 𝐵 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ifcif 4119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rab 2950 df-v 3233 df-un 3612 df-if 4120 |
This theorem is referenced by: ifeq12d 4139 ifbieq2d 4144 ifeq2da 4150 ifcomnan 4170 rdgeq1 7552 cantnflem1d 8623 cantnflem1 8624 rexmul 12139 1arithlem4 15677 ramcl 15780 mplcoe1 19513 mplcoe5 19516 subrgascl 19546 scmatscm 20367 marrepfval 20414 ma1repveval 20425 mulmarep1el 20426 mdetralt2 20463 mdetunilem8 20473 maduval 20492 maducoeval2 20494 madurid 20498 minmar1val0 20501 monmatcollpw 20632 pmatcollpwscmatlem1 20642 monmat2matmon 20677 itg2monolem1 23562 iblmulc2 23642 itgmulc2lem1 23643 bddmulibl 23650 dvtaylp 24169 dchrinvcl 25023 rpvmasum2 25246 padicfval 25350 plymulx 30753 itg2addnclem 33591 itg2addnclem3 33593 itg2addnc 33594 itgmulc2nclem1 33606 hdmap1fval 37403 itgioocnicc 40511 etransclem14 40783 etransclem17 40786 etransclem21 40790 etransclem25 40794 etransclem28 40797 etransclem31 40800 hsphoif 41111 hoidmvval 41112 hsphoival 41114 hoidmvlelem5 41134 hoidmvle 41135 ovnhoi 41138 hspmbllem2 41162 |
Copyright terms: Public domain | W3C validator |