![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifeq12d | Structured version Visualization version GIF version |
Description: Equality deduction for conditional operator. (Contributed by NM, 24-Mar-2015.) |
Ref | Expression |
---|---|
ifeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
ifeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
ifeq12d | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | ifeq1d 4137 | . 2 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
3 | ifeq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
4 | 3 | ifeq2d 4138 | . 2 ⊢ (𝜑 → if(𝜓, 𝐵, 𝐶) = if(𝜓, 𝐵, 𝐷)) |
5 | 2, 4 | eqtrd 2685 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ifcif 4119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rab 2950 df-v 3233 df-un 3612 df-if 4120 |
This theorem is referenced by: ifbieq12d 4146 csbif 4171 oev 7639 dfac12r 9006 xaddpnf1 12095 swrdccat3blem 13541 relexpsucnnr 13809 ruclem1 15004 eucalgval 15342 gsumpropd 17319 gsumpropd2lem 17320 gsumress 17323 mulgfval 17589 mulgpropd 17631 frgpup3lem 18236 subrgmvr 19509 isobs 20112 uvcfval 20171 matsc 20304 scmatscmide 20361 marrepval0 20415 marepvval0 20420 mulmarep1el 20426 madufval 20491 madugsum 20497 minmar1fval 20500 pmat1opsc 20552 pmat1ovscd 20553 mat2pmat1 20585 decpmatid 20623 idpm2idmp 20654 pcoval 22857 pcorevlem 22872 itg2const 23552 ditgeq3 23659 efrlim 24741 lgsval 25071 rpvmasum2 25246 fzto1st 29981 psgnfzto1st 29983 xrhval 30190 itg2addnclem 33591 ftc1anclem5 33619 hdmap1fval 37403 dgrsub2 38022 dirkerval 40626 fourierdlem111 40752 fourierdlem112 40753 fourierdlem113 40754 hsphoif 41111 hsphoival 41114 hoidmvlelem5 41134 hoidifhspval2 41150 hspmbllem2 41162 |
Copyright terms: Public domain | W3C validator |