![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iexpcyc | Structured version Visualization version GIF version |
Description: Taking i to the 𝐾-th power is the same as using the 𝐾 mod 4 -th power instead, by i4 13132. (Contributed by Mario Carneiro, 7-Jul-2014.) |
Ref | Expression |
---|---|
iexpcyc | ⊢ (𝐾 ∈ ℤ → (i↑(𝐾 mod 4)) = (i↑𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 11544 | . . . 4 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℝ) | |
2 | 4re 11260 | . . . . 5 ⊢ 4 ∈ ℝ | |
3 | 4pos 11279 | . . . . 5 ⊢ 0 < 4 | |
4 | 2, 3 | elrpii 11999 | . . . 4 ⊢ 4 ∈ ℝ+ |
5 | modval 12835 | . . . 4 ⊢ ((𝐾 ∈ ℝ ∧ 4 ∈ ℝ+) → (𝐾 mod 4) = (𝐾 − (4 · (⌊‘(𝐾 / 4))))) | |
6 | 1, 4, 5 | sylancl 697 | . . 3 ⊢ (𝐾 ∈ ℤ → (𝐾 mod 4) = (𝐾 − (4 · (⌊‘(𝐾 / 4))))) |
7 | 6 | oveq2d 6817 | . 2 ⊢ (𝐾 ∈ ℤ → (i↑(𝐾 mod 4)) = (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4)))))) |
8 | 4z 11574 | . . . . 5 ⊢ 4 ∈ ℤ | |
9 | 4nn 11350 | . . . . . . 7 ⊢ 4 ∈ ℕ | |
10 | nndivre 11219 | . . . . . . 7 ⊢ ((𝐾 ∈ ℝ ∧ 4 ∈ ℕ) → (𝐾 / 4) ∈ ℝ) | |
11 | 1, 9, 10 | sylancl 697 | . . . . . 6 ⊢ (𝐾 ∈ ℤ → (𝐾 / 4) ∈ ℝ) |
12 | 11 | flcld 12764 | . . . . 5 ⊢ (𝐾 ∈ ℤ → (⌊‘(𝐾 / 4)) ∈ ℤ) |
13 | zmulcl 11589 | . . . . 5 ⊢ ((4 ∈ ℤ ∧ (⌊‘(𝐾 / 4)) ∈ ℤ) → (4 · (⌊‘(𝐾 / 4))) ∈ ℤ) | |
14 | 8, 12, 13 | sylancr 698 | . . . 4 ⊢ (𝐾 ∈ ℤ → (4 · (⌊‘(𝐾 / 4))) ∈ ℤ) |
15 | ax-icn 10158 | . . . . 5 ⊢ i ∈ ℂ | |
16 | ine0 10628 | . . . . 5 ⊢ i ≠ 0 | |
17 | expsub 13073 | . . . . 5 ⊢ (((i ∈ ℂ ∧ i ≠ 0) ∧ (𝐾 ∈ ℤ ∧ (4 · (⌊‘(𝐾 / 4))) ∈ ℤ)) → (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4))))) = ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4)))))) | |
18 | 15, 16, 17 | mpanl12 720 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ (4 · (⌊‘(𝐾 / 4))) ∈ ℤ) → (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4))))) = ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4)))))) |
19 | 14, 18 | mpdan 705 | . . 3 ⊢ (𝐾 ∈ ℤ → (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4))))) = ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4)))))) |
20 | expmulz 13071 | . . . . . . . 8 ⊢ (((i ∈ ℂ ∧ i ≠ 0) ∧ (4 ∈ ℤ ∧ (⌊‘(𝐾 / 4)) ∈ ℤ)) → (i↑(4 · (⌊‘(𝐾 / 4)))) = ((i↑4)↑(⌊‘(𝐾 / 4)))) | |
21 | 15, 16, 20 | mpanl12 720 | . . . . . . 7 ⊢ ((4 ∈ ℤ ∧ (⌊‘(𝐾 / 4)) ∈ ℤ) → (i↑(4 · (⌊‘(𝐾 / 4)))) = ((i↑4)↑(⌊‘(𝐾 / 4)))) |
22 | 8, 12, 21 | sylancr 698 | . . . . . 6 ⊢ (𝐾 ∈ ℤ → (i↑(4 · (⌊‘(𝐾 / 4)))) = ((i↑4)↑(⌊‘(𝐾 / 4)))) |
23 | i4 13132 | . . . . . . . 8 ⊢ (i↑4) = 1 | |
24 | 23 | oveq1i 6811 | . . . . . . 7 ⊢ ((i↑4)↑(⌊‘(𝐾 / 4))) = (1↑(⌊‘(𝐾 / 4))) |
25 | 1exp 13054 | . . . . . . . 8 ⊢ ((⌊‘(𝐾 / 4)) ∈ ℤ → (1↑(⌊‘(𝐾 / 4))) = 1) | |
26 | 12, 25 | syl 17 | . . . . . . 7 ⊢ (𝐾 ∈ ℤ → (1↑(⌊‘(𝐾 / 4))) = 1) |
27 | 24, 26 | syl5eq 2794 | . . . . . 6 ⊢ (𝐾 ∈ ℤ → ((i↑4)↑(⌊‘(𝐾 / 4))) = 1) |
28 | 22, 27 | eqtrd 2782 | . . . . 5 ⊢ (𝐾 ∈ ℤ → (i↑(4 · (⌊‘(𝐾 / 4)))) = 1) |
29 | 28 | oveq2d 6817 | . . . 4 ⊢ (𝐾 ∈ ℤ → ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4))))) = ((i↑𝐾) / 1)) |
30 | expclz 13050 | . . . . . 6 ⊢ ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝐾 ∈ ℤ) → (i↑𝐾) ∈ ℂ) | |
31 | 15, 16, 30 | mp3an12 1551 | . . . . 5 ⊢ (𝐾 ∈ ℤ → (i↑𝐾) ∈ ℂ) |
32 | 31 | div1d 10956 | . . . 4 ⊢ (𝐾 ∈ ℤ → ((i↑𝐾) / 1) = (i↑𝐾)) |
33 | 29, 32 | eqtrd 2782 | . . 3 ⊢ (𝐾 ∈ ℤ → ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4))))) = (i↑𝐾)) |
34 | 19, 33 | eqtrd 2782 | . 2 ⊢ (𝐾 ∈ ℤ → (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4))))) = (i↑𝐾)) |
35 | 7, 34 | eqtrd 2782 | 1 ⊢ (𝐾 ∈ ℤ → (i↑(𝐾 mod 4)) = (i↑𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1620 ∈ wcel 2127 ≠ wne 2920 ‘cfv 6037 (class class class)co 6801 ℂcc 10097 ℝcr 10098 0cc0 10099 1c1 10100 ici 10101 · cmul 10104 − cmin 10429 / cdiv 10847 ℕcn 11183 4c4 11235 ℤcz 11540 ℝ+crp 11996 ⌊cfl 12756 mod cmo 12833 ↑cexp 13025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-cnex 10155 ax-resscn 10156 ax-1cn 10157 ax-icn 10158 ax-addcl 10159 ax-addrcl 10160 ax-mulcl 10161 ax-mulrcl 10162 ax-mulcom 10163 ax-addass 10164 ax-mulass 10165 ax-distr 10166 ax-i2m1 10167 ax-1ne0 10168 ax-1rid 10169 ax-rnegex 10170 ax-rrecex 10171 ax-cnre 10172 ax-pre-lttri 10173 ax-pre-lttrn 10174 ax-pre-ltadd 10175 ax-pre-mulgt0 10176 ax-pre-sup 10177 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-reu 3045 df-rmo 3046 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-pss 3719 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-tp 4314 df-op 4316 df-uni 4577 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-tr 4893 df-id 5162 df-eprel 5167 df-po 5175 df-so 5176 df-fr 5213 df-we 5215 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-pred 5829 df-ord 5875 df-on 5876 df-lim 5877 df-suc 5878 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-riota 6762 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-om 7219 df-2nd 7322 df-wrecs 7564 df-recs 7625 df-rdg 7663 df-er 7899 df-en 8110 df-dom 8111 df-sdom 8112 df-sup 8501 df-inf 8502 df-pnf 10239 df-mnf 10240 df-xr 10241 df-ltxr 10242 df-le 10243 df-sub 10431 df-neg 10432 df-div 10848 df-nn 11184 df-2 11242 df-3 11243 df-4 11244 df-n0 11456 df-z 11541 df-uz 11851 df-rp 11997 df-fl 12758 df-mod 12834 df-seq 12967 df-exp 13026 |
This theorem is referenced by: iblitg 23705 |
Copyright terms: Public domain | W3C validator |