![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iedgvalsnop | Structured version Visualization version GIF version |
Description: Degenerated case 2 for edges: The set of indexed edges of a singleton containing an ordered pair with equal components is the singleton containing the component. (Contributed by AV, 24-Sep-2020.) (Proof shortened by AV, 15-Jul-2022.) (Avoid depending on this detail.) |
Ref | Expression |
---|---|
vtxvalsnop.b | ⊢ 𝐵 ∈ V |
vtxvalsnop.g | ⊢ 𝐺 = {〈𝐵, 𝐵〉} |
Ref | Expression |
---|---|
iedgvalsnop | ⊢ (iEdg‘𝐺) = {𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtxvalsnop.g | . . 3 ⊢ 𝐺 = {〈𝐵, 𝐵〉} | |
2 | 1 | fveq2i 6336 | . 2 ⊢ (iEdg‘𝐺) = (iEdg‘{〈𝐵, 𝐵〉}) |
3 | vtxvalsnop.b | . . . 4 ⊢ 𝐵 ∈ V | |
4 | 3 | snopeqopsnid 5103 | . . 3 ⊢ {〈𝐵, 𝐵〉} = 〈{𝐵}, {𝐵}〉 |
5 | 4 | fveq2i 6336 | . 2 ⊢ (iEdg‘{〈𝐵, 𝐵〉}) = (iEdg‘〈{𝐵}, {𝐵}〉) |
6 | snex 5037 | . . 3 ⊢ {𝐵} ∈ V | |
7 | 6, 6 | opiedgfvi 26111 | . 2 ⊢ (iEdg‘〈{𝐵}, {𝐵}〉) = {𝐵} |
8 | 2, 5, 7 | 3eqtri 2797 | 1 ⊢ (iEdg‘𝐺) = {𝐵} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1631 ∈ wcel 2145 Vcvv 3351 {csn 4317 〈cop 4323 ‘cfv 6030 iEdgciedg 26096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-iota 5993 df-fun 6032 df-fv 6038 df-2nd 7320 df-iedg 26098 |
This theorem is referenced by: iedgval3sn 26157 |
Copyright terms: Public domain | W3C validator |