Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  idunop Structured version   Visualization version   GIF version

Theorem idunop 29168
 Description: The identity function (restricted to Hilbert space) is a unitary operator. (Contributed by NM, 21-Jan-2006.) (New usage is discouraged.)
Assertion
Ref Expression
idunop ( I ↾ ℋ) ∈ UniOp

Proof of Theorem idunop
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oi 6337 . . 3 ( I ↾ ℋ): ℋ–1-1-onto→ ℋ
2 f1ofo 6307 . . 3 (( I ↾ ℋ): ℋ–1-1-onto→ ℋ → ( I ↾ ℋ): ℋ–onto→ ℋ)
31, 2ax-mp 5 . 2 ( I ↾ ℋ): ℋ–onto→ ℋ
4 fvresi 6605 . . . 4 (𝑥 ∈ ℋ → (( I ↾ ℋ)‘𝑥) = 𝑥)
5 fvresi 6605 . . . 4 (𝑦 ∈ ℋ → (( I ↾ ℋ)‘𝑦) = 𝑦)
64, 5oveqan12d 6834 . . 3 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((( I ↾ ℋ)‘𝑥) ·ih (( I ↾ ℋ)‘𝑦)) = (𝑥 ·ih 𝑦))
76rgen2a 3116 . 2 𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((( I ↾ ℋ)‘𝑥) ·ih (( I ↾ ℋ)‘𝑦)) = (𝑥 ·ih 𝑦)
8 elunop 29062 . 2 (( I ↾ ℋ) ∈ UniOp ↔ (( I ↾ ℋ): ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((( I ↾ ℋ)‘𝑥) ·ih (( I ↾ ℋ)‘𝑦)) = (𝑥 ·ih 𝑦)))
93, 7, 8mpbir2an 993 1 ( I ↾ ℋ) ∈ UniOp
 Colors of variables: wff setvar class Syntax hints:   = wceq 1632   ∈ wcel 2140  ∀wral 3051   I cid 5174   ↾ cres 5269  –onto→wfo 6048  –1-1-onto→wf1o 6049  ‘cfv 6050  (class class class)co 6815   ℋchil 28107   ·ih csp 28110  UniOpcuo 28137 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pr 5056  ax-hilex 28187 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-id 5175  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-ov 6818  df-unop 29033 This theorem is referenced by:  idlnop  29182
 Copyright terms: Public domain W3C validator