Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idomsubgmo Structured version   Visualization version   GIF version

Theorem idomsubgmo 38247
Description: The units of an integral domain have at most one subgroup of any single finite cardinality. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Revised by NM, 17-Jun-2017.)
Hypothesis
Ref Expression
idomsubgmo.g 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))
Assertion
Ref Expression
idomsubgmo ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → ∃*𝑦 ∈ (SubGrp‘𝐺)(♯‘𝑦) = 𝑁)
Distinct variable groups:   𝑦,𝐺   𝑦,𝑁   𝑦,𝑅

Proof of Theorem idomsubgmo
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6350 . . . . . . . . 9 (Base‘𝐺) ∈ V
21rabex 4952 . . . . . . . 8 {𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁} ∈ V
3 simp2l 1218 . . . . . . . . . . 11 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → 𝑦 ∈ (SubGrp‘𝐺))
4 eqid 2748 . . . . . . . . . . . 12 (Base‘𝐺) = (Base‘𝐺)
54subgss 17767 . . . . . . . . . . 11 (𝑦 ∈ (SubGrp‘𝐺) → 𝑦 ⊆ (Base‘𝐺))
63, 5syl 17 . . . . . . . . . 10 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → 𝑦 ⊆ (Base‘𝐺))
7 simpl2l 1259 . . . . . . . . . . . 12 ((((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) ∧ 𝑧𝑦) → 𝑦 ∈ (SubGrp‘𝐺))
8 simp3l 1220 . . . . . . . . . . . . . . 15 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → (♯‘𝑦) = 𝑁)
9 simp1r 1217 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → 𝑁 ∈ ℕ)
109nnnn0d 11514 . . . . . . . . . . . . . . 15 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → 𝑁 ∈ ℕ0)
118, 10eqeltrd 2827 . . . . . . . . . . . . . 14 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → (♯‘𝑦) ∈ ℕ0)
12 vex 3331 . . . . . . . . . . . . . . 15 𝑦 ∈ V
13 hashclb 13312 . . . . . . . . . . . . . . 15 (𝑦 ∈ V → (𝑦 ∈ Fin ↔ (♯‘𝑦) ∈ ℕ0))
1412, 13ax-mp 5 . . . . . . . . . . . . . 14 (𝑦 ∈ Fin ↔ (♯‘𝑦) ∈ ℕ0)
1511, 14sylibr 224 . . . . . . . . . . . . 13 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → 𝑦 ∈ Fin)
1615adantr 472 . . . . . . . . . . . 12 ((((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) ∧ 𝑧𝑦) → 𝑦 ∈ Fin)
17 simpr 479 . . . . . . . . . . . 12 ((((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) ∧ 𝑧𝑦) → 𝑧𝑦)
18 eqid 2748 . . . . . . . . . . . . 13 (od‘𝐺) = (od‘𝐺)
1918odsubdvds 18157 . . . . . . . . . . . 12 ((𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑦 ∈ Fin ∧ 𝑧𝑦) → ((od‘𝐺)‘𝑧) ∥ (♯‘𝑦))
207, 16, 17, 19syl3anc 1463 . . . . . . . . . . 11 ((((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) ∧ 𝑧𝑦) → ((od‘𝐺)‘𝑧) ∥ (♯‘𝑦))
218adantr 472 . . . . . . . . . . 11 ((((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) ∧ 𝑧𝑦) → (♯‘𝑦) = 𝑁)
2220, 21breqtrd 4818 . . . . . . . . . 10 ((((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) ∧ 𝑧𝑦) → ((od‘𝐺)‘𝑧) ∥ 𝑁)
236, 22ssrabdv 3810 . . . . . . . . 9 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → 𝑦 ⊆ {𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁})
24 simp2r 1219 . . . . . . . . . . 11 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → 𝑥 ∈ (SubGrp‘𝐺))
254subgss 17767 . . . . . . . . . . 11 (𝑥 ∈ (SubGrp‘𝐺) → 𝑥 ⊆ (Base‘𝐺))
2624, 25syl 17 . . . . . . . . . 10 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → 𝑥 ⊆ (Base‘𝐺))
27 simpl2r 1261 . . . . . . . . . . . 12 ((((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) ∧ 𝑧𝑥) → 𝑥 ∈ (SubGrp‘𝐺))
28 simp3r 1221 . . . . . . . . . . . . . . 15 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → (♯‘𝑥) = 𝑁)
2928, 10eqeltrd 2827 . . . . . . . . . . . . . 14 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → (♯‘𝑥) ∈ ℕ0)
30 vex 3331 . . . . . . . . . . . . . . 15 𝑥 ∈ V
31 hashclb 13312 . . . . . . . . . . . . . . 15 (𝑥 ∈ V → (𝑥 ∈ Fin ↔ (♯‘𝑥) ∈ ℕ0))
3230, 31ax-mp 5 . . . . . . . . . . . . . 14 (𝑥 ∈ Fin ↔ (♯‘𝑥) ∈ ℕ0)
3329, 32sylibr 224 . . . . . . . . . . . . 13 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → 𝑥 ∈ Fin)
3433adantr 472 . . . . . . . . . . . 12 ((((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) ∧ 𝑧𝑥) → 𝑥 ∈ Fin)
35 simpr 479 . . . . . . . . . . . 12 ((((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) ∧ 𝑧𝑥) → 𝑧𝑥)
3618odsubdvds 18157 . . . . . . . . . . . 12 ((𝑥 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ Fin ∧ 𝑧𝑥) → ((od‘𝐺)‘𝑧) ∥ (♯‘𝑥))
3727, 34, 35, 36syl3anc 1463 . . . . . . . . . . 11 ((((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) ∧ 𝑧𝑥) → ((od‘𝐺)‘𝑧) ∥ (♯‘𝑥))
3828adantr 472 . . . . . . . . . . 11 ((((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) ∧ 𝑧𝑥) → (♯‘𝑥) = 𝑁)
3937, 38breqtrd 4818 . . . . . . . . . 10 ((((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) ∧ 𝑧𝑥) → ((od‘𝐺)‘𝑧) ∥ 𝑁)
4026, 39ssrabdv 3810 . . . . . . . . 9 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → 𝑥 ⊆ {𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁})
4123, 40unssd 3920 . . . . . . . 8 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → (𝑦𝑥) ⊆ {𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁})
42 ssdomg 8155 . . . . . . . 8 ({𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁} ∈ V → ((𝑦𝑥) ⊆ {𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁} → (𝑦𝑥) ≼ {𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁}))
432, 41, 42mpsyl 68 . . . . . . 7 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → (𝑦𝑥) ≼ {𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁})
44 idomsubgmo.g . . . . . . . . . . 11 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))
4544, 4, 18idomodle 38245 . . . . . . . . . 10 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁}) ≤ 𝑁)
46453ad2ant1 1125 . . . . . . . . 9 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁}) ≤ 𝑁)
4746, 8breqtrrd 4820 . . . . . . . 8 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁}) ≤ (♯‘𝑦))
482a1i 11 . . . . . . . . . 10 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → {𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁} ∈ V)
49 hashbnd 13288 . . . . . . . . . 10 (({𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁} ∈ V ∧ (♯‘𝑦) ∈ ℕ0 ∧ (♯‘{𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁}) ≤ (♯‘𝑦)) → {𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁} ∈ Fin)
5048, 11, 47, 49syl3anc 1463 . . . . . . . . 9 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → {𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁} ∈ Fin)
51 hashdom 13331 . . . . . . . . 9 (({𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁} ∈ Fin ∧ 𝑦 ∈ V) → ((♯‘{𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁}) ≤ (♯‘𝑦) ↔ {𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁} ≼ 𝑦))
5250, 12, 51sylancl 697 . . . . . . . 8 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → ((♯‘{𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁}) ≤ (♯‘𝑦) ↔ {𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁} ≼ 𝑦))
5347, 52mpbid 222 . . . . . . 7 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → {𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁} ≼ 𝑦)
54 domtr 8162 . . . . . . 7 (((𝑦𝑥) ≼ {𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁} ∧ {𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁} ≼ 𝑦) → (𝑦𝑥) ≼ 𝑦)
5543, 53, 54syl2anc 696 . . . . . 6 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → (𝑦𝑥) ≼ 𝑦)
5612, 30unex 7109 . . . . . . 7 (𝑦𝑥) ∈ V
57 ssun1 3907 . . . . . . 7 𝑦 ⊆ (𝑦𝑥)
58 ssdomg 8155 . . . . . . 7 ((𝑦𝑥) ∈ V → (𝑦 ⊆ (𝑦𝑥) → 𝑦 ≼ (𝑦𝑥)))
5956, 57, 58mp2 9 . . . . . 6 𝑦 ≼ (𝑦𝑥)
60 sbth 8233 . . . . . 6 (((𝑦𝑥) ≼ 𝑦𝑦 ≼ (𝑦𝑥)) → (𝑦𝑥) ≈ 𝑦)
6155, 59, 60sylancl 697 . . . . 5 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → (𝑦𝑥) ≈ 𝑦)
628, 28eqtr4d 2785 . . . . . . 7 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → (♯‘𝑦) = (♯‘𝑥))
63 hashen 13300 . . . . . . . 8 ((𝑦 ∈ Fin ∧ 𝑥 ∈ Fin) → ((♯‘𝑦) = (♯‘𝑥) ↔ 𝑦𝑥))
6415, 33, 63syl2anc 696 . . . . . . 7 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → ((♯‘𝑦) = (♯‘𝑥) ↔ 𝑦𝑥))
6562, 64mpbid 222 . . . . . 6 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → 𝑦𝑥)
66 fiuneneq 38246 . . . . . 6 ((𝑦𝑥𝑦 ∈ Fin) → ((𝑦𝑥) ≈ 𝑦𝑦 = 𝑥))
6765, 15, 66syl2anc 696 . . . . 5 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → ((𝑦𝑥) ≈ 𝑦𝑦 = 𝑥))
6861, 67mpbid 222 . . . 4 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → 𝑦 = 𝑥)
69683expia 1114 . . 3 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺))) → (((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁) → 𝑦 = 𝑥))
7069ralrimivva 3097 . 2 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → ∀𝑦 ∈ (SubGrp‘𝐺)∀𝑥 ∈ (SubGrp‘𝐺)(((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁) → 𝑦 = 𝑥))
71 fveq2 6340 . . . 4 (𝑦 = 𝑥 → (♯‘𝑦) = (♯‘𝑥))
7271eqeq1d 2750 . . 3 (𝑦 = 𝑥 → ((♯‘𝑦) = 𝑁 ↔ (♯‘𝑥) = 𝑁))
7372rmo4 3528 . 2 (∃*𝑦 ∈ (SubGrp‘𝐺)(♯‘𝑦) = 𝑁 ↔ ∀𝑦 ∈ (SubGrp‘𝐺)∀𝑥 ∈ (SubGrp‘𝐺)(((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁) → 𝑦 = 𝑥))
7470, 73sylibr 224 1 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → ∃*𝑦 ∈ (SubGrp‘𝐺)(♯‘𝑦) = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1620  wcel 2127  wral 3038  ∃*wrmo 3041  {crab 3042  Vcvv 3328  cun 3701  wss 3703   class class class wbr 4792  cfv 6037  (class class class)co 6801  cen 8106  cdom 8107  Fincfn 8109  cle 10238  cn 11183  0cn0 11455  chash 13282  cdvds 15153  Basecbs 16030  s cress 16031  SubGrpcsubg 17760  odcod 18115  mulGrpcmgp 18660  Unitcui 18810  IDomncidom 19454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-inf2 8699  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176  ax-pre-sup 10177  ax-addf 10178  ax-mulf 10179
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-fal 1626  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-iin 4663  df-disj 4761  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-se 5214  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-isom 6046  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-of 7050  df-ofr 7051  df-om 7219  df-1st 7321  df-2nd 7322  df-supp 7452  df-tpos 7509  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-oadd 7721  df-omul 7722  df-er 7899  df-ec 7901  df-qs 7905  df-map 8013  df-pm 8014  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8429  df-sup 8501  df-inf 8502  df-oi 8568  df-card 8926  df-acn 8929  df-cda 9153  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-div 10848  df-nn 11184  df-2 11242  df-3 11243  df-4 11244  df-5 11245  df-6 11246  df-7 11247  df-8 11248  df-9 11249  df-n0 11456  df-xnn0 11527  df-z 11541  df-dec 11657  df-uz 11851  df-rp 11997  df-fz 12491  df-fzo 12631  df-fl 12758  df-mod 12834  df-seq 12967  df-exp 13026  df-hash 13283  df-cj 14009  df-re 14010  df-im 14011  df-sqrt 14145  df-abs 14146  df-clim 14389  df-sum 14587  df-dvds 15154  df-struct 16032  df-ndx 16033  df-slot 16034  df-base 16036  df-sets 16037  df-ress 16038  df-plusg 16127  df-mulr 16128  df-starv 16129  df-sca 16130  df-vsca 16131  df-ip 16132  df-tset 16133  df-ple 16134  df-ds 16137  df-unif 16138  df-hom 16139  df-cco 16140  df-0g 16275  df-gsum 16276  df-prds 16281  df-pws 16283  df-mre 16419  df-mrc 16420  df-acs 16422  df-mgm 17414  df-sgrp 17456  df-mnd 17467  df-mhm 17507  df-submnd 17508  df-grp 17597  df-minusg 17598  df-sbg 17599  df-mulg 17713  df-subg 17763  df-eqg 17765  df-ghm 17830  df-cntz 17921  df-od 18119  df-cmn 18366  df-abl 18367  df-mgp 18661  df-ur 18673  df-srg 18677  df-ring 18720  df-cring 18721  df-oppr 18794  df-dvdsr 18812  df-unit 18813  df-invr 18843  df-rnghom 18888  df-subrg 18951  df-lmod 19038  df-lss 19106  df-lsp 19145  df-nzr 19431  df-rlreg 19456  df-domn 19457  df-idom 19458  df-assa 19485  df-asp 19486  df-ascl 19487  df-psr 19529  df-mvr 19530  df-mpl 19531  df-opsr 19533  df-evls 19679  df-evl 19680  df-psr1 19723  df-vr1 19724  df-ply1 19725  df-coe1 19726  df-evl1 19854  df-cnfld 19920  df-mdeg 23985  df-deg1 23986  df-mon1 24060  df-uc1p 24061  df-q1p 24062  df-r1p 24063
This theorem is referenced by:  proot1mul  38248
  Copyright terms: Public domain W3C validator