MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idmot Structured version   Visualization version   GIF version

Theorem idmot 25653
Description: The identity is a motion. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
ismot.p 𝑃 = (Base‘𝐺)
ismot.m = (dist‘𝐺)
motgrp.1 (𝜑𝐺𝑉)
Assertion
Ref Expression
idmot (𝜑 → ( I ↾ 𝑃) ∈ (𝐺Ismt𝐺))

Proof of Theorem idmot
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 motgrp.1 . 2 (𝜑𝐺𝑉)
2 f1oi 6337 . . 3 ( I ↾ 𝑃):𝑃1-1-onto𝑃
32a1i 11 . 2 (𝜑 → ( I ↾ 𝑃):𝑃1-1-onto𝑃)
4 fvresi 6605 . . . . 5 (𝑎𝑃 → (( I ↾ 𝑃)‘𝑎) = 𝑎)
54ad2antrl 766 . . . 4 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → (( I ↾ 𝑃)‘𝑎) = 𝑎)
6 fvresi 6605 . . . . 5 (𝑏𝑃 → (( I ↾ 𝑃)‘𝑏) = 𝑏)
76ad2antll 767 . . . 4 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → (( I ↾ 𝑃)‘𝑏) = 𝑏)
85, 7oveq12d 6833 . . 3 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → ((( I ↾ 𝑃)‘𝑎) (( I ↾ 𝑃)‘𝑏)) = (𝑎 𝑏))
98ralrimivva 3110 . 2 (𝜑 → ∀𝑎𝑃𝑏𝑃 ((( I ↾ 𝑃)‘𝑎) (( I ↾ 𝑃)‘𝑏)) = (𝑎 𝑏))
10 ismot.p . . . 4 𝑃 = (Base‘𝐺)
11 ismot.m . . . 4 = (dist‘𝐺)
1210, 11ismot 25651 . . 3 (𝐺𝑉 → (( I ↾ 𝑃) ∈ (𝐺Ismt𝐺) ↔ (( I ↾ 𝑃):𝑃1-1-onto𝑃 ∧ ∀𝑎𝑃𝑏𝑃 ((( I ↾ 𝑃)‘𝑎) (( I ↾ 𝑃)‘𝑏)) = (𝑎 𝑏))))
1312biimpar 503 . 2 ((𝐺𝑉 ∧ (( I ↾ 𝑃):𝑃1-1-onto𝑃 ∧ ∀𝑎𝑃𝑏𝑃 ((( I ↾ 𝑃)‘𝑎) (( I ↾ 𝑃)‘𝑏)) = (𝑎 𝑏))) → ( I ↾ 𝑃) ∈ (𝐺Ismt𝐺))
141, 3, 9, 13syl12anc 1475 1 (𝜑 → ( I ↾ 𝑃) ∈ (𝐺Ismt𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2140  wral 3051   I cid 5174  cres 5269  1-1-ontowf1o 6049  cfv 6050  (class class class)co 6815  Basecbs 16080  distcds 16173  Ismtcismt 25648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-id 5175  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-map 8028  df-ismt 25649
This theorem is referenced by:  motgrp  25659
  Copyright terms: Public domain W3C validator