![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ideq2 | Structured version Visualization version GIF version |
Description: For sets, the identity binary relation is the same as equality. (Contributed by Peter Mazsa, 24-Jun-2020.) (Revised by Peter Mazsa, 18-Dec-2021.) |
Ref | Expression |
---|---|
ideq2 | ⊢ (𝐴 ∈ 𝑉 → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brid 34420 | . 2 ⊢ (𝐴 I 𝐵 ↔ 𝐵 I 𝐴) | |
2 | ideqg 5430 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐵 I 𝐴 ↔ 𝐵 = 𝐴)) | |
3 | eqcom 2768 | . . 3 ⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) | |
4 | 2, 3 | syl6bb 276 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐵 I 𝐴 ↔ 𝐴 = 𝐵)) |
5 | 1, 4 | syl5bb 272 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1632 ∈ wcel 2140 class class class wbr 4805 I cid 5174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pr 5056 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-sn 4323 df-pr 4325 df-op 4329 df-br 4806 df-opab 4866 df-id 5175 df-xp 5273 df-rel 5274 df-cnv 5275 |
This theorem is referenced by: br1cossinidres 34541 br1cossxrnidres 34543 |
Copyright terms: Public domain | W3C validator |