MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idahom Structured version   Visualization version   GIF version

Theorem idahom 16917
Description: Domain and codomain of the identity arrow. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
idafval.i 𝐼 = (Ida𝐶)
idafval.b 𝐵 = (Base‘𝐶)
idafval.c (𝜑𝐶 ∈ Cat)
idahom.x (𝜑𝑋𝐵)
idahom.h 𝐻 = (Homa𝐶)
Assertion
Ref Expression
idahom (𝜑 → (𝐼𝑋) ∈ (𝑋𝐻𝑋))

Proof of Theorem idahom
StepHypRef Expression
1 idafval.i . . 3 𝐼 = (Ida𝐶)
2 idafval.b . . 3 𝐵 = (Base‘𝐶)
3 idafval.c . . 3 (𝜑𝐶 ∈ Cat)
4 eqid 2771 . . 3 (Id‘𝐶) = (Id‘𝐶)
5 idahom.x . . 3 (𝜑𝑋𝐵)
61, 2, 3, 4, 5idaval 16915 . 2 (𝜑 → (𝐼𝑋) = ⟨𝑋, 𝑋, ((Id‘𝐶)‘𝑋)⟩)
7 idahom.h . . 3 𝐻 = (Homa𝐶)
8 eqid 2771 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
92, 8, 4, 3, 5catidcl 16550 . . 3 (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋))
107, 2, 3, 8, 5, 5, 9elhomai2 16891 . 2 (𝜑 → ⟨𝑋, 𝑋, ((Id‘𝐶)‘𝑋)⟩ ∈ (𝑋𝐻𝑋))
116, 10eqeltrd 2850 1 (𝜑 → (𝐼𝑋) ∈ (𝑋𝐻𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wcel 2145  cotp 4324  cfv 6031  (class class class)co 6793  Basecbs 16064  Hom chom 16160  Catccat 16532  Idccid 16533  Homachoma 16880  Idacida 16910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-ot 4325  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-cat 16536  df-cid 16537  df-homa 16883  df-ida 16912
This theorem is referenced by:  idadm  16918  idacd  16919  idaf  16920  arwlid  16929  arwrid  16930
  Copyright terms: Public domain W3C validator