MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icoval Structured version   Visualization version   GIF version

Theorem icoval 12327
Description: Value of the closed-below, open-above interval function. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
icoval ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴[,)𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥 < 𝐵)})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem icoval
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ico 12295 . 2 [,) = (𝑦 ∈ ℝ*, 𝑧 ∈ ℝ* ↦ {𝑥 ∈ ℝ* ∣ (𝑦𝑥𝑥 < 𝑧)})
21ixxval 12297 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴[,)𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥 < 𝐵)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1596  wcel 2103  {crab 3018   class class class wbr 4760  (class class class)co 6765  *cxr 10186   < clt 10187  cle 10188  [,)cico 12291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-sep 4889  ax-nul 4897  ax-pr 5011  ax-un 7066  ax-cnex 10105  ax-resscn 10106
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ral 3019  df-rex 3020  df-rab 3023  df-v 3306  df-sbc 3542  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-nul 4024  df-if 4195  df-sn 4286  df-pr 4288  df-op 4292  df-uni 4545  df-br 4761  df-opab 4821  df-id 5128  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-iota 5964  df-fun 6003  df-fv 6009  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-xr 10191  df-ico 12295
This theorem is referenced by:  ico0  12335  orvcgteel  30759  elicores  40180  volicorescl  41190
  Copyright terms: Public domain W3C validator