![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > icossxr | Structured version Visualization version GIF version |
Description: A closed-below, open-above interval is a subset of the extended reals. (Contributed by FL, 29-May-2014.) (Revised by Mario Carneiro, 4-Jul-2014.) |
Ref | Expression |
---|---|
icossxr | ⊢ (𝐴[,)𝐵) ⊆ ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ico 12394 | . 2 ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
2 | 1 | ixxssxr 12400 | 1 ⊢ (𝐴[,)𝐵) ⊆ ℝ* |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3715 (class class class)co 6814 ℝ*cxr 10285 < clt 10286 ≤ cle 10287 [,)cico 12390 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fv 6057 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-1st 7334 df-2nd 7335 df-xr 10290 df-ico 12394 |
This theorem is referenced by: leordtvallem2 21237 leordtval2 21238 nmoffn 22736 nmofval 22739 nmogelb 22741 nmolb 22742 nmof 22744 icopnfhmeo 22963 elovolm 23463 ovolmge0 23465 ovolgelb 23468 ovollb2lem 23476 ovoliunlem1 23490 ovoliunlem2 23491 ovolscalem1 23501 ovolicc1 23504 ioombl1lem2 23547 ioombl1lem4 23549 uniioovol 23567 uniiccvol 23568 uniioombllem1 23569 uniioombllem2 23571 uniioombllem3 23573 uniioombllem6 23576 esumpfinvallem 30466 esummulc1 30473 esummulc2 30474 mblfinlem3 33779 mblfinlem4 33780 ismblfin 33781 itg2gt0cn 33796 xralrple2 40086 icoub 40273 liminflelimsuplem 40528 elhoi 41280 hoidmvlelem5 41337 ovnhoilem1 41339 ovnhoilem2 41340 ovnhoi 41341 |
Copyright terms: Public domain | W3C validator |