MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icossre Structured version   Visualization version   GIF version

Theorem icossre 12458
Description: A closed-below interval with real lower bound is a set of reals. (Contributed by Mario Carneiro, 14-Jun-2014.)
Assertion
Ref Expression
icossre ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ℝ)

Proof of Theorem icossre
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elico2 12441 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐵)))
21biimp3a 1579 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝑥 ∈ (𝐴[,)𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐵))
32simp1d 1135 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝑥 ∈ (𝐴[,)𝐵)) → 𝑥 ∈ ℝ)
433expia 1113 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴[,)𝐵) → 𝑥 ∈ ℝ))
54ssrdv 3756 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1070  wcel 2144  wss 3721   class class class wbr 4784  (class class class)co 6792  cr 10136  *cxr 10274   < clt 10275  cle 10276  [,)cico 12381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-pre-lttri 10211  ax-pre-lttrn 10212
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-po 5170  df-so 5171  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-ico 12385
This theorem is referenced by:  icoshftf1o  12501  ico01fl0  12827  rexico  14300  rlim3  14436  fprodge1  14931  ovolicopnf  23511  dvfsumrlim2  24014  tanord1  24503  chebbnd1  25381  chebbnd2  25386  dchrisumlem3  25400  pntpbnd1  25495  pntibndlem2  25500  sxbrsigalem0  30667  dya2iocress  30670  dya2iocucvr  30680  sitmcl  30747  tan2h  33727  icoopn  40264  limciccioolb  40365  ltmod  40382  limcresioolb  40387  limsupresre  40440  limsupresico  40444  liminfresico  40515  fourierdlem32  40867  fourierdlem46  40880  fourierdlem48  40882  fourierdlem93  40927  fouriersw  40959  fouriercn  40960  hoissre  41272  hoissrrn2  41306  hoidmv1lelem2  41320  ovnlecvr2  41338  hspdifhsp  41344  hoiqssbllem2  41351  hspmbllem2  41355  iinhoiicclem  41401
  Copyright terms: Public domain W3C validator