Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icoreunrn Structured version   Visualization version   GIF version

Theorem icoreunrn 33337
Description: The union of all closed-below, open-above intervals of reals is the set of reals. (Contributed by ML, 27-Jul-2020.)
Hypothesis
Ref Expression
icoreunrn.1 𝐼 = ([,) “ (ℝ × ℝ))
Assertion
Ref Expression
icoreunrn ℝ = 𝐼

Proof of Theorem icoreunrn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rexr 10123 . . . . . . 7 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
2 peano2re 10247 . . . . . . . 8 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
3 rexr 10123 . . . . . . . 8 ((𝑥 + 1) ∈ ℝ → (𝑥 + 1) ∈ ℝ*)
42, 3syl 17 . . . . . . 7 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ*)
5 ltp1 10899 . . . . . . 7 (𝑥 ∈ ℝ → 𝑥 < (𝑥 + 1))
6 lbico1 12266 . . . . . . 7 ((𝑥 ∈ ℝ* ∧ (𝑥 + 1) ∈ ℝ*𝑥 < (𝑥 + 1)) → 𝑥 ∈ (𝑥[,)(𝑥 + 1)))
71, 4, 5, 6syl3anc 1366 . . . . . 6 (𝑥 ∈ ℝ → 𝑥 ∈ (𝑥[,)(𝑥 + 1)))
8 df-ov 6693 . . . . . 6 (𝑥[,)(𝑥 + 1)) = ([,)‘⟨𝑥, (𝑥 + 1)⟩)
97, 8syl6eleq 2740 . . . . 5 (𝑥 ∈ ℝ → 𝑥 ∈ ([,)‘⟨𝑥, (𝑥 + 1)⟩))
10 opelxpi 5182 . . . . . . 7 ((𝑥 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ) → ⟨𝑥, (𝑥 + 1)⟩ ∈ (ℝ × ℝ))
112, 10mpdan 703 . . . . . 6 (𝑥 ∈ ℝ → ⟨𝑥, (𝑥 + 1)⟩ ∈ (ℝ × ℝ))
12 fvres 6245 . . . . . 6 (⟨𝑥, (𝑥 + 1)⟩ ∈ (ℝ × ℝ) → (([,) ↾ (ℝ × ℝ))‘⟨𝑥, (𝑥 + 1)⟩) = ([,)‘⟨𝑥, (𝑥 + 1)⟩))
1311, 12syl 17 . . . . 5 (𝑥 ∈ ℝ → (([,) ↾ (ℝ × ℝ))‘⟨𝑥, (𝑥 + 1)⟩) = ([,)‘⟨𝑥, (𝑥 + 1)⟩))
149, 13eleqtrrd 2733 . . . 4 (𝑥 ∈ ℝ → 𝑥 ∈ (([,) ↾ (ℝ × ℝ))‘⟨𝑥, (𝑥 + 1)⟩))
15 icoreresf 33330 . . . . . . . 8 ([,) ↾ (ℝ × ℝ)):(ℝ × ℝ)⟶𝒫 ℝ
1615fdmi 6090 . . . . . . 7 dom ([,) ↾ (ℝ × ℝ)) = (ℝ × ℝ)
1710, 16syl6eleqr 2741 . . . . . 6 ((𝑥 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ) → ⟨𝑥, (𝑥 + 1)⟩ ∈ dom ([,) ↾ (ℝ × ℝ)))
182, 17mpdan 703 . . . . 5 (𝑥 ∈ ℝ → ⟨𝑥, (𝑥 + 1)⟩ ∈ dom ([,) ↾ (ℝ × ℝ)))
19 ffun 6086 . . . . . . . 8 (([,) ↾ (ℝ × ℝ)):(ℝ × ℝ)⟶𝒫 ℝ → Fun ([,) ↾ (ℝ × ℝ)))
2015, 19ax-mp 5 . . . . . . 7 Fun ([,) ↾ (ℝ × ℝ))
21 fvelrn 6392 . . . . . . 7 ((Fun ([,) ↾ (ℝ × ℝ)) ∧ ⟨𝑥, (𝑥 + 1)⟩ ∈ dom ([,) ↾ (ℝ × ℝ))) → (([,) ↾ (ℝ × ℝ))‘⟨𝑥, (𝑥 + 1)⟩) ∈ ran ([,) ↾ (ℝ × ℝ)))
2220, 21mpan 706 . . . . . 6 (⟨𝑥, (𝑥 + 1)⟩ ∈ dom ([,) ↾ (ℝ × ℝ)) → (([,) ↾ (ℝ × ℝ))‘⟨𝑥, (𝑥 + 1)⟩) ∈ ran ([,) ↾ (ℝ × ℝ)))
23 icoreunrn.1 . . . . . . 7 𝐼 = ([,) “ (ℝ × ℝ))
24 df-ima 5156 . . . . . . 7 ([,) “ (ℝ × ℝ)) = ran ([,) ↾ (ℝ × ℝ))
2523, 24eqtri 2673 . . . . . 6 𝐼 = ran ([,) ↾ (ℝ × ℝ))
2622, 25syl6eleqr 2741 . . . . 5 (⟨𝑥, (𝑥 + 1)⟩ ∈ dom ([,) ↾ (ℝ × ℝ)) → (([,) ↾ (ℝ × ℝ))‘⟨𝑥, (𝑥 + 1)⟩) ∈ 𝐼)
2718, 26syl 17 . . . 4 (𝑥 ∈ ℝ → (([,) ↾ (ℝ × ℝ))‘⟨𝑥, (𝑥 + 1)⟩) ∈ 𝐼)
28 elunii 4473 . . . 4 ((𝑥 ∈ (([,) ↾ (ℝ × ℝ))‘⟨𝑥, (𝑥 + 1)⟩) ∧ (([,) ↾ (ℝ × ℝ))‘⟨𝑥, (𝑥 + 1)⟩) ∈ 𝐼) → 𝑥 𝐼)
2914, 27, 28syl2anc 694 . . 3 (𝑥 ∈ ℝ → 𝑥 𝐼)
3029ssriv 3640 . 2 ℝ ⊆ 𝐼
31 frn 6091 . . . . 5 (([,) ↾ (ℝ × ℝ)):(ℝ × ℝ)⟶𝒫 ℝ → ran ([,) ↾ (ℝ × ℝ)) ⊆ 𝒫 ℝ)
3215, 31ax-mp 5 . . . 4 ran ([,) ↾ (ℝ × ℝ)) ⊆ 𝒫 ℝ
3325, 32eqsstri 3668 . . 3 𝐼 ⊆ 𝒫 ℝ
34 uniss 4490 . . . 4 (𝐼 ⊆ 𝒫 ℝ → 𝐼 𝒫 ℝ)
35 unipw 4948 . . . 4 𝒫 ℝ = ℝ
3634, 35syl6sseq 3684 . . 3 (𝐼 ⊆ 𝒫 ℝ → 𝐼 ⊆ ℝ)
3733, 36ax-mp 5 . 2 𝐼 ⊆ ℝ
3830, 37eqssi 3652 1 ℝ = 𝐼
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1523  wcel 2030  wss 3607  𝒫 cpw 4191  cop 4216   cuni 4468   class class class wbr 4685   × cxp 5141  dom cdm 5143  ran crn 5144  cres 5145  cima 5146  Fun wfun 5920  wf 5922  cfv 5926  (class class class)co 6690  cr 9973  1c1 9975   + caddc 9977  *cxr 10111   < clt 10112  [,)cico 12215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-ico 12219
This theorem is referenced by:  istoprelowl  33338  relowlssretop  33341  relowlpssretop  33342
  Copyright terms: Public domain W3C validator